These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 24912124)
1. Can we learn from heterosis and epigenetics to improve photosynthesis? Offermann S; Peterhansel C Curr Opin Plant Biol; 2014 Jun; 19():105-10. PubMed ID: 24912124 [TBL] [Abstract][Full Text] [Related]
2. Heterosis, stress, and the environment: a possible road map towards the general improvement of crop yield. Blum A J Exp Bot; 2013 Nov; 64(16):4829-37. PubMed ID: 24014873 [TBL] [Abstract][Full Text] [Related]
6. Transposable elements, a treasure trove to decipher epigenetic variation: insights from Arabidopsis and crop epigenomes. Mirouze M; Vitte C J Exp Bot; 2014 Jun; 65(10):2801-12. PubMed ID: 24744427 [TBL] [Abstract][Full Text] [Related]
7. Will C3 crops enhanced with the C4 CO2-concentrating mechanism live up to their full potential (yield)? Driever SM; Kromdijk J J Exp Bot; 2013 Oct; 64(13):3925-35. PubMed ID: 23585671 [TBL] [Abstract][Full Text] [Related]
8. Enhancing (crop) plant photosynthesis by introducing novel genetic diversity. Dann M; Leister D Philos Trans R Soc Lond B Biol Sci; 2017 Sep; 372(1730):. PubMed ID: 28808099 [TBL] [Abstract][Full Text] [Related]
9. Molecular basis of heterosis and related breeding strategies reveal its importance in vegetable breeding. Yu D; Gu X; Zhang S; Dong S; Miao H; Gebretsadik K; Bo K Hortic Res; 2021 Jun; 8(1):120. PubMed ID: 34059656 [TBL] [Abstract][Full Text] [Related]
10. [Epigenetic variation and its application in crop improvement]. Jing J; Qian Q; Bojun M; Zhenyu G Yi Chuan; 2014 May; 36(5):469-75. PubMed ID: 24846996 [TBL] [Abstract][Full Text] [Related]
12. Crop transformation and the challenge to increase yield potential. Sinclair TR; Purcell LC; Sneller CH Trends Plant Sci; 2004 Feb; 9(2):70-5. PubMed ID: 15102372 [TBL] [Abstract][Full Text] [Related]
13. Emerging molecular mechanisms for biotechnological harnessing of heterosis in crops. McKeown PC; Fort A; Duszynska D; Sulpice R; Spillane C Trends Biotechnol; 2013 Oct; 31(10):549-51. PubMed ID: 23886568 [No Abstract] [Full Text] [Related]
14. Advances and prospects: biotechnologically improving crop water use efficiency. Zhengbin Z; Ping X; Hongbo S; Mengjun L; Zhenyan F; Liye C Crit Rev Biotechnol; 2011 Sep; 31(3):281-93. PubMed ID: 21486183 [TBL] [Abstract][Full Text] [Related]
15. Plant synthetic epigenomic engineering for crop improvement. Yang L; Zhang P; Wang Y; Hu G; Guo W; Gu X; Pu L Sci China Life Sci; 2022 Nov; 65(11):2191-2204. PubMed ID: 35851940 [TBL] [Abstract][Full Text] [Related]
16. Natural and induced epigenetic variation for crop improvement. Lieberman-Lazarovich M; Kaiserli E; Bucher E; Mladenov V Curr Opin Plant Biol; 2022 Dec; 70():102297. PubMed ID: 36108411 [TBL] [Abstract][Full Text] [Related]
17. Feeding the world: improving photosynthetic efficiency for sustainable crop production. Simkin AJ; López-Calcagno PE; Raines CA J Exp Bot; 2019 Feb; 70(4):1119-1140. PubMed ID: 30772919 [TBL] [Abstract][Full Text] [Related]
18. Engineering photosynthesis in plants and synthetic microorganisms. Maurino VG; Weber AP J Exp Bot; 2013 Jan; 64(3):743-51. PubMed ID: 23028016 [TBL] [Abstract][Full Text] [Related]
19. Carbon and nitrogen assimilation in relation to yield: mechanisms are the key to understanding production systems. Lawlor DW J Exp Bot; 2002 Apr; 53(370):773-87. PubMed ID: 11912221 [TBL] [Abstract][Full Text] [Related]
20. Biochemical analyses of inbreds and their heterotic hybrids in maize. Tsaftaris AS Prog Clin Biol Res; 1990; 344():639-64. PubMed ID: 2203058 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]