BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

717 related articles for article (PubMed ID: 24912209)

  • 1. Phytoremediation of heavy and transition metals aided by legume-rhizobia symbiosis.
    Hao X; Taghavi S; Xie P; Orbach MJ; Alwathnani HA; Rensing C; Wei G
    Int J Phytoremediation; 2014; 16(2):179-202. PubMed ID: 24912209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Application of rhizobia-legume symbiosis for remediation of heavy-metal contaminated soils].
    Wei G; Ma Z
    Wei Sheng Wu Xue Bao; 2010 Nov; 50(11):1421-30. PubMed ID: 21268885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonnodulating Bradyrhizobium spp. Modulate the Benefits of Legume-Rhizobium Mutualism.
    Gano-Cohen KA; Stokes PJ; Blanton MA; Wendlandt CE; Hollowell AC; Regus JU; Kim D; Patel S; Pahua VJ; Sachs JL
    Appl Environ Microbiol; 2016 Sep; 82(17):5259-68. PubMed ID: 27316960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing genotypic diversity and symbiotic efficiency of five rhizobial legume interactions under cadmium stress for soil phytoremediation.
    Guefrachi I; Rejili M; Mahdhi M; Mars M
    Int J Phytoremediation; 2013; 15(10):938-51. PubMed ID: 23819287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Utilization of Legume-Nodule Bacterial Symbiosis in Phytoremediation of Heavy Metal-Contaminated Soils.
    Jach ME; Sajnaga E; Ziaja M
    Biology (Basel); 2022 Apr; 11(5):. PubMed ID: 35625404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptome Response to Heavy Metals in Sinorhizobium meliloti CCNWSX0020 Reveals New Metal Resistance Determinants That Also Promote Bioremediation by Medicago lupulina in Metal-Contaminated Soil.
    Lu M; Jiao S; Gao E; Song X; Li Z; Hao X; Rensing C; Wei G
    Appl Environ Microbiol; 2017 Oct; 83(20):. PubMed ID: 28778889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of legume nodulation by acidic growth conditions.
    Ferguson BJ; Lin MH; Gresshoff PM
    Plant Signal Behav; 2013 Mar; 8(3):e23426. PubMed ID: 23333963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Vicia faba L. var. minor and Sulla coronaria (L.) Medik associated with plant growth-promoting bacteria on lettuce cropping system and heavy metal phytoremediation under field conditions.
    Saadani O; Jebara SH; Fatnassi IC; Chiboub M; Mannai K; Zarrad I; Jebara M
    Environ Sci Pollut Res Int; 2019 Mar; 26(8):8125-8135. PubMed ID: 30693447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Establishing nitrogen-fixing symbiosis with legumes: how many rhizobium recipes?
    Masson-Boivin C; Giraud E; Perret X; Batut J
    Trends Microbiol; 2009 Oct; 17(10):458-66. PubMed ID: 19766492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Early Molecular Dialogue Between Legumes and Rhizobia: Why Are They So Important?
    Valdés-López O; Reyero-Saavedra MDR; Isidra-Arellano MC; Sánchez-Correa MDS
    Results Probl Cell Differ; 2020; 69():409-419. PubMed ID: 33263881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How inefficient rhizobia prolong their existence within nodules.
    Schumpp O; Deakin WJ
    Trends Plant Sci; 2010 Apr; 15(4):189-95. PubMed ID: 20117958
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emergence of β-rhizobia as new root nodulating bacteria in legumes and current status of the legume-rhizobium host specificity dogma.
    Hassen AI; Lamprecht SC; Bopape FL
    World J Microbiol Biotechnol; 2020 Feb; 36(3):40. PubMed ID: 32095903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Native rhizobia from Zn mining soil promote the growth of Leucaena leucocephala on contaminated soil.
    Rangel WM; Thijs S; Janssen J; Oliveira Longatti SM; Bonaldi DS; Ribeiro PR; Jambon I; Eevers N; Weyens N; Vangronsveld J; Moreira FM
    Int J Phytoremediation; 2017 Feb; 19(2):142-156. PubMed ID: 27409290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phytohormone regulation of legume-rhizobia interactions.
    Ferguson BJ; Mathesius U
    J Chem Ecol; 2014 Jul; 40(7):770-90. PubMed ID: 25052910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of efficient plant-growth-promoting bacteria isolated from Sulla coronaria resistant to cadmium and to other heavy metals.
    Chiboub M; Saadani O; Fatnassi IC; Abdelkrim S; Abid G; Jebara M; Jebara SH
    C R Biol; 2016; 339(9-10):391-8. PubMed ID: 27498183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Never too many? How legumes control nodule numbers.
    Mortier V; Holsters M; Goormachtig S
    Plant Cell Environ; 2012 Feb; 35(2):245-58. PubMed ID: 21819415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms in plant growth-promoting rhizobacteria that enhance legume-rhizobial symbioses.
    Alemneh AA; Zhou Y; Ryder MH; Denton MD
    J Appl Microbiol; 2020 Nov; 129(5):1133-1156. PubMed ID: 32592603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coevolution in Rhizobium-legume symbiosis?
    Martínez-Romero E
    DNA Cell Biol; 2009 Aug; 28(8):361-70. PubMed ID: 19485766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes.
    Gage DJ
    Microbiol Mol Biol Rev; 2004 Jun; 68(2):280-300. PubMed ID: 15187185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The biodiversity of beneficial microbe-host mutualism: the case of rhizobia.
    Lindström K; Murwira M; Willems A; Altier N
    Res Microbiol; 2010; 161(6):453-63. PubMed ID: 20685242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.