These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1051 related articles for article (PubMed ID: 24912234)
1. Characterization of bacteria in the rhizosphere soils of Polygonum pubescens and their potential in promoting growth and Cd, Pb, Zn uptake by Brassica napus. Jing YX; Yan JL; He HD; Yang DJ; Xiao L; Zhong T; Yuan M; Cai XD; Li SB Int J Phytoremediation; 2014; 16(4):321-33. PubMed ID: 24912234 [TBL] [Abstract][Full Text] [Related]
2. Characterization of endophytic Rahnella sp. JN6 from Polygonum pubescens and its potential in promoting growth and Cd, Pb, Zn uptake by Brassica napus. He H; Ye Z; Yang D; Yan J; Xiao L; Zhong T; Yuan M; Cai X; Fang Z; Jing Y Chemosphere; 2013 Feb; 90(6):1960-5. PubMed ID: 23177711 [TBL] [Abstract][Full Text] [Related]
3. Inoculation with Metal-Mobilizing Plant-Growth-Promoting Rhizobacterium Bacillus sp. SC2b and Its Role in Rhizoremediation. Ma Y; Oliveira RS; Wu L; Luo Y; Rajkumar M; Rocha I; Freitas H J Toxicol Environ Health A; 2015; 78(13-14):931-44. PubMed ID: 26167758 [TBL] [Abstract][Full Text] [Related]
4. Effects of Cd, Pb, Zn, Cu-resistant endophytic Enterobacter sr CBSB1 and Rhodotorula sp. CBSB79 on the growth and phytoextraction of Brassica plants in multimetal contaminated soils. Wang W; Deng Z; Tan H; Cao L Int J Phytoremediation; 2013; 15(5):488-97. PubMed ID: 23488174 [TBL] [Abstract][Full Text] [Related]
5. The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil. Ma Y; Oliveira RS; Nai F; Rajkumar M; Luo Y; Rocha I; Freitas H J Environ Manage; 2015 Jun; 156():62-9. PubMed ID: 25796039 [TBL] [Abstract][Full Text] [Related]
6. Characterization of plant-growth-promoting effects and concurrent promotion of heavy metal accumulation in the tissues of the plants grown in the polluted soil by Burkholderia strain LD-11. Huang GH; Tian HH; Liu HY; Fan XW; Liang Y; Li YZ Int J Phytoremediation; 2013; 15(10):991-1009. PubMed ID: 23819291 [TBL] [Abstract][Full Text] [Related]
7. Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Sheng XF; Xia JJ; Jiang CY; He LY; Qian M Environ Pollut; 2008 Dec; 156(3):1164-70. PubMed ID: 18490091 [TBL] [Abstract][Full Text] [Related]
8. Distribution of Cd, Pb, Zn, Mo, and S in juvenile and mature Brassica napus L. var. napus. Romih N; Grabner B; Lakota M; Ribaric-Lasnik C Int J Phytoremediation; 2012 Mar; 14(3):282-301. PubMed ID: 22567712 [TBL] [Abstract][Full Text] [Related]
9. Assessment of bacterial communities and characterization of lead-resistant bacteria in the rhizosphere soils of metal-tolerant Chenopodium ambrosioides grown on lead-zinc mine tailings. Zhang WH; Huang Z; He LY; Sheng XF Chemosphere; 2012 Jun; 87(10):1171-8. PubMed ID: 22397839 [TBL] [Abstract][Full Text] [Related]
10. Effects of root inoculation with bacteria on the growth, Cd uptake and bacterial communities associated with rape grown in Cd-contaminated soil. Chen ZJ; Sheng XF; He LY; Huang Z; Zhang WH J Hazard Mater; 2013 Jan; 244-245():709-17. PubMed ID: 23177252 [TBL] [Abstract][Full Text] [Related]
11. Promotion of growth and phytoextraction of cadmium and lead in Solanum nigrum L. mediated by plant-growth-promoting rhizobacteria. He X; Xu M; Wei Q; Tang M; Guan L; Lou L; Xu X; Hu Z; Chen Y; Shen Z; Xia Y Ecotoxicol Environ Saf; 2020 Dec; 205():111333. PubMed ID: 32979802 [TBL] [Abstract][Full Text] [Related]
12. The potential of willow for remediation of heavy metal polluted calcareous urban soils. Jensen JK; Holm PE; Nejrup J; Larsen MB; Borggaard OK Environ Pollut; 2009 Mar; 157(3):931-7. PubMed ID: 19062141 [TBL] [Abstract][Full Text] [Related]
13. Isolation and Characterization of Pb-Solubilizing Bacteria and Their Effects on Pb Uptake by Yahaghi Z; Shirvani M; Nourbakhsh F; de la Peña TC; Pueyo JJ; Talebi M J Microbiol Biotechnol; 2018 Jul; 28(7):1156-1167. PubMed ID: 29975995 [TBL] [Abstract][Full Text] [Related]
14. Fungal inoculation and elevated CO2 mediate growth of Lolium mutiforum and Phytolacca americana, metal uptake, and metal bioavailability in metal-contaminated soil: evidence from DGT measurement. Song N; Wang F; Zhang C; Tang S; Guo J; Ju X; Smith DL Int J Phytoremediation; 2013; 15(3):268-82. PubMed ID: 23488012 [TBL] [Abstract][Full Text] [Related]
15. Characterization of cadmium-resistant rhizobacteria and their promotion effects on Brassica napus growth and cadmium uptake. Li X; Yan Z; Gu D; Li D; Tao Y; Zhang D; Su L; Ao Y J Basic Microbiol; 2019 Jun; 59(6):579-590. PubMed ID: 30980735 [TBL] [Abstract][Full Text] [Related]
16. Heavy metal accumulation in Lathyrus sativus growing in contaminated soils and identification of symbiotic resistant bacteria. Abdelkrim S; Jebara SH; Saadani O; Chiboub M; Abid G; Mannai K; Jebara M Arch Microbiol; 2019 Jan; 201(1):107-121. PubMed ID: 30276423 [TBL] [Abstract][Full Text] [Related]
17. Effects of inoculation of biosurfactant-producing Bacillus sp. J119 on plant growth and cadmium uptake in a cadmium-amended soil. Sheng X; He L; Wang Q; Ye H; Jiang C J Hazard Mater; 2008 Jun; 155(1-2):17-22. PubMed ID: 18082946 [TBL] [Abstract][Full Text] [Related]
18. Phytoextraction of heavy metal polluted soils using Sedum plumbizincicola inoculated with metal mobilizing Phyllobacterium myrsinacearum RC6b. Ma Y; Rajkumar M; Luo Y; Freitas H Chemosphere; 2013 Oct; 93(7):1386-92. PubMed ID: 23890964 [TBL] [Abstract][Full Text] [Related]
19. Heavy metal-immobilizing bacteria increase the biomass and reduce the Cd and Pb uptake by pakchoi (Brassica chinensis L.) in heavy metal-contaminated soil. Han H; Cai H; Wang X; Hu X; Chen Z; Yao L Ecotoxicol Environ Saf; 2020 Jun; 195():110375. PubMed ID: 32200142 [TBL] [Abstract][Full Text] [Related]