These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1051 related articles for article (PubMed ID: 24912234)
21. Inoculation of phosphate solubilizing bacteria for the improvement of lead accumulation by Brassica juncea. Ren YX; Zhu XL; Fan DD; Ma P; Liang LH Environ Technol; 2013; 34(1-4):463-9. PubMed ID: 23530360 [TBL] [Abstract][Full Text] [Related]
22. Culturable bacteria from Zn- and Cd-accumulating Salix caprea with differential effects on plant growth and heavy metal availability. Kuffner M; De Maria S; Puschenreiter M; Fallmann K; Wieshammer G; Gorfer M; Strauss J; Rivelli AR; Sessitsch A J Appl Microbiol; 2010 Apr; 108(4):1471-84. PubMed ID: 20132372 [TBL] [Abstract][Full Text] [Related]
23. Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil. Jiang CY; Sheng XF; Qian M; Wang QY Chemosphere; 2008 May; 72(2):157-64. PubMed ID: 18348897 [TBL] [Abstract][Full Text] [Related]
24. Isolation, characterization and the effect of indigenous heavy metal-resistant plant growth-promoting bacteria on sorghum grown in acid mine drainage polluted soils. Wu Z; Kong Z; Lu S; Huang C; Huang S; He Y; Wu L J Gen Appl Microbiol; 2019 Dec; 65(5):254-264. PubMed ID: 31243191 [TBL] [Abstract][Full Text] [Related]
25. Enhancement of the germination and growth of Panicum miliaceum and Brassica juncea in Cd- and Zn-contaminated soil inoculated with heavy-metal-tolerant Leifsonia sp. ZP3. Cho I; Lee SY; Cho KS World J Microbiol Biotechnol; 2024 Jun; 40(8):245. PubMed ID: 38884883 [TBL] [Abstract][Full Text] [Related]
26. Chemical and biological properties in the rhizosphere of Lupinus albus alter soil heavy metal fractionation. Martínez-Alcalá I; Walker DJ; Bernal MP Ecotoxicol Environ Saf; 2010 May; 73(4):595-602. PubMed ID: 20060590 [TBL] [Abstract][Full Text] [Related]
27. Pseudometallophytes colonising Pb/Zn mine tailings: a description of the plant-microorganism-rhizosphere soil system and isolation of metal-tolerant bacteria. Becerra-Castro C; Monterroso C; Prieto-Fernández A; Rodríguez-Lamas L; Loureiro-Viñas M; Acea MJ; Kidd PS J Hazard Mater; 2012 May; 217-218():350-9. PubMed ID: 22483595 [TBL] [Abstract][Full Text] [Related]
28. Enhanced Cd extraction of oilseed rape (Brassica napus) by plant growth-promoting bacteria isolated from Cd hyperaccumulator Sedum alfredii Hance. Pan F; Meng Q; Luo S; Shen J; Chen B; Khan KY; Japenga J; Ma X; Yang X; Feng Y Int J Phytoremediation; 2017 Mar; 19(3):281-289. PubMed ID: 27593491 [TBL] [Abstract][Full Text] [Related]
29. The use of NTA and EDDS for enhanced phytoextraction of metals from a multiply contaminated soil by Brassica carinata. Quartacci MF; Irtelli B; Baker AJ; Navari-Izzo F Chemosphere; 2007 Aug; 68(10):1920-8. PubMed ID: 17418884 [TBL] [Abstract][Full Text] [Related]
30. Phytoextraction of zinc, copper, nickel and lead from a contaminated soil by different species of Brassica. Purakayastha TJ; Viswanath T; Bhadraray S; Chhonkar PK; Adhikari PP; Suribabu K Int J Phytoremediation; 2008; 10(1):61-72. PubMed ID: 18709932 [TBL] [Abstract][Full Text] [Related]
31. Evaluation of different phosphate amendments on availability of metals in contaminated soil. Chen S; Xu M; Ma Y; Yang J Ecotoxicol Environ Saf; 2007 Jun; 67(2):278-85. PubMed ID: 16887186 [TBL] [Abstract][Full Text] [Related]
32. Enhancement of phytoremediation of Cd- and Pb-contaminated soils by self-fusion of protoplasts from endophytic fungus Mucor sp. CBRF59. Deng Z; Zhang R; Shi Y; Hu L; Tan H; Cao L Chemosphere; 2013 Mar; 91(1):41-7. PubMed ID: 23273739 [TBL] [Abstract][Full Text] [Related]
33. Characterization of bacterial communities associated with Brassica napus L. growing on a Zn-contaminated soil and their effects on root growth. Montalbán B; Croes S; Weyens N; Lobo MC; Pérez-Sanz A; Vangronsveld J Int J Phytoremediation; 2016 Oct; 18(10):985-93. PubMed ID: 27159736 [TBL] [Abstract][Full Text] [Related]
34. Improvement of rape (Brassica napus) plant growth and cadmium uptake by cadmium-resistant bacteria. Sheng XF; Xia JJ Chemosphere; 2006 Aug; 64(6):1036-42. PubMed ID: 16516946 [TBL] [Abstract][Full Text] [Related]
35. [Promotion effects of microorganisms on phytoremediation of heavy metals-contaminated soil]. Yang Z; Wang ZL; Li BW; Zhang RF Ying Yong Sheng Tai Xue Bao; 2009 Aug; 20(8):2025-31. PubMed ID: 19947228 [TBL] [Abstract][Full Text] [Related]
36. Effects of Cd- and Pb-resistant endophytic fungi on growth and phytoextraction of Brassica napus in metal-contaminated soils. Shi Y; Xie H; Cao L; Zhang R; Xu Z; Wang Z; Deng Z Environ Sci Pollut Res Int; 2017 Jan; 24(1):417-426. PubMed ID: 27726080 [TBL] [Abstract][Full Text] [Related]
37. Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China). Liu H; Probst A; Liao B Sci Total Environ; 2005 Mar; 339(1-3):153-66. PubMed ID: 15740766 [TBL] [Abstract][Full Text] [Related]
38. Characterization of plant growth-promoting Bacillus edaphicus NBT and its effect on lead uptake by Indian mustard in a lead-amended soil. Sheng XF; Jiang CY; He LY Can J Microbiol; 2008 May; 54(5):417-22. PubMed ID: 18449227 [TBL] [Abstract][Full Text] [Related]
39. Assessment of fly ash-aided phytostabilisation of highly contaminated soils after an 8-year field trial Part 2. Influence on plants. Pourrut B; Lopareva-Pohu A; Pruvot C; Garçon G; Verdin A; Waterlot C; Bidar G; Shirali P; Douay F Sci Total Environ; 2011 Oct; 409(21):4504-10. PubMed ID: 21871650 [TBL] [Abstract][Full Text] [Related]
40. Influence of metal resistant-plant growth-promoting bacteria on the growth of Ricinus communis in soil contaminated with heavy metals. Rajkumar M; Freitas H Chemosphere; 2008 Mar; 71(5):834-42. PubMed ID: 18164365 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]