These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 24912235)
1. Feasibility of Typha latifolia for high salinity effluent treatment in constructed wetlands for integration in resource management systems. Jesus JM; Calheiros CS; Castro PM; Borges MT Int J Phytoremediation; 2014; 16(4):334-46. PubMed ID: 24912235 [TBL] [Abstract][Full Text] [Related]
2. Suitability of nutrients removal from brewery wastewater using a hydroponic technology with Typha latifolia. Gebeyehu A; Shebeshe N; Kloos H; Belay S BMC Biotechnol; 2018 Nov; 18(1):74. PubMed ID: 30466420 [TBL] [Abstract][Full Text] [Related]
3. Phytoremediation of an integrated poultry and aquaculture wastewater using sub-surface constructed wetland planted with Akadiri SA; Dada PO; Badejo AA; Adeosun OJ; Ogunrinde AT; Faloye OT Int J Phytoremediation; 2024 May; 26(7):1133-1143. PubMed ID: 38140944 [TBL] [Abstract][Full Text] [Related]
4. Treatment of industrial wastewater with two-stage constructed wetlands planted with Typha latifolia and Phragmites australis. Calheiros CS; Rangel AO; Castro PM Bioresour Technol; 2009 Jul; 100(13):3205-13. PubMed ID: 19289277 [TBL] [Abstract][Full Text] [Related]
5. Role of vegetation (Typha latifolia) on nutrient removal in a horizontal subsurface-flow constructed wetland treating UASB reactor-trickling filter effluent. da Costa JF; Martins WL; Seidl M; von Sperling M Water Sci Technol; 2015; 71(7):1004-10. PubMed ID: 25860702 [TBL] [Abstract][Full Text] [Related]
6. Removal of pharmaceuticals in microcosm constructed wetlands using Typha spp. and LECA. Dordio A; Carvalho AJ; Teixeira DM; Dias CB; Pinto AP Bioresour Technol; 2010 Feb; 101(3):886-92. PubMed ID: 19783427 [TBL] [Abstract][Full Text] [Related]
7. The use of Bassia indica for salt phytoremediation in constructed wetlands. Shelef O; Gross A; Rachmilevitch S Water Res; 2012 Sep; 46(13):3967-76. PubMed ID: 22673346 [TBL] [Abstract][Full Text] [Related]
8. The macro nutrient removal efficiencies of a vertical flow constructed wetland fed with demineralized cheese whey powder solution. Yalcuk A Int J Phytoremediation; 2012 Feb; 14(2):114-27. PubMed ID: 22567699 [TBL] [Abstract][Full Text] [Related]
9. [Optimization of nitrogen and phosphorus removal in vertical subsurface flow constructed wetlands by using polypropylene pellet as part of substrate]. Tang XQ; Li JZ; Li XJ; Liu XG; Huang SL Huan Jing Ke Xue; 2008 May; 29(5):1284-8. PubMed ID: 18624194 [TBL] [Abstract][Full Text] [Related]
10. Municipal wastewater treatment potential and metal accumulation strategies of Colocasia esculenta (L.) Schott and Typha latifolia L. in a constructed wetland. Rana V; Maiti SK Environ Monit Assess; 2018 May; 190(6):328. PubMed ID: 29730705 [TBL] [Abstract][Full Text] [Related]
11. The role of sand, marble chips and Typha latifolia in domestic wastewater treatment - a column study on constructed wetlands. Kadaverugu R; Shingare RP; Raghunathan K; Juwarkar AA; Thawale PR; Singh SK Environ Technol; 2016 Oct; 37(19):2508-15. PubMed ID: 26878342 [TBL] [Abstract][Full Text] [Related]
12. [Residence time distributions and spatial variation of N, P in the subsurface-flow constructed wetlands for purification of eutrophic aquaculture water]. Yang CM; Gu GQ; Li JH; Deng HH Huan Jing Ke Xue; 2008 Nov; 29(11):3043-8. PubMed ID: 19186799 [TBL] [Abstract][Full Text] [Related]
13. Nutrient removal through autumn harvest of Phragmites australis and Thypha latifolia shoots in relation to nutrient loading in a wetland system used for polishing sewage treatment plant effluent. Toet S; Bouwman M; Cevaal A; Verhoeven JT J Environ Sci Health A Tox Hazard Subst Environ Eng; 2005; 40(6-7):1133-56. PubMed ID: 15921271 [TBL] [Abstract][Full Text] [Related]
14. Use of horizontal subsurface flow constructed wetlands to treat reverse osmosis concentrate of rolling wastewater. Xu J; Zhao G; Huang X; Guo H; Liu W Int J Phytoremediation; 2017 Mar; 19(3):262-269. PubMed ID: 27712090 [TBL] [Abstract][Full Text] [Related]
15. Constructed wetlands for tannery wastewater treatment in Portugal: ten years of experience. Calheiros CS; Rangel AO; Castro PM Int J Phytoremediation; 2014; 16(7-12):859-70. PubMed ID: 24933889 [TBL] [Abstract][Full Text] [Related]
16. Effects of Ornamental Plant Density and Mineral/Plastic Media on the Removal of Domestic Wastewater Pollutants by Home Wetlands Technology. Sandoval-Herazo LC; Alvarado-Lassman A; López-Méndez MC; Martínez-Sibaja A; Aguilar-Lasserre AA; Zamora-Castro S; Marín-Muñiz JL Molecules; 2020 Nov; 25(22):. PubMed ID: 33198195 [TBL] [Abstract][Full Text] [Related]
17. Treatment of freshwater fish farm effluent using constructed wetlands: the role of plants and substrate. Naylor S; Brlsson J; Labelle MA; Drizo A; Comeau Y Water Sci Technol; 2003; 48(5):215-22. PubMed ID: 14621167 [TBL] [Abstract][Full Text] [Related]
18. [Treatment of marine-aquaculture effluent by the multi-soil-layer (MSL) system and subsurface flow constructed wetland]. Song Y; Huang YT; Ge C; Zhang H; Chen X; Zhang ZJ; Luo AC Huan Jing Ke Xue; 2014 Sep; 35(9):3436-42. PubMed ID: 25518662 [TBL] [Abstract][Full Text] [Related]
19. Performance evaluation of planted and unplanted subsurface-flow constructed wetlands for the post-treatment of UASB reactor effluents. Dornelas FL; Machado MB; von Sperling M Water Sci Technol; 2009; 60(12):3025-33. PubMed ID: 19955625 [TBL] [Abstract][Full Text] [Related]
20. Effect of different plant species on nutrient removal and rhizospheric microorganisms distribution in horizontal-flow constructed wetlands. Meng P; Hu W; Pei H; Hou Q; Ji Y Environ Technol; 2014; 35(5-8):808-16. PubMed ID: 24645463 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]