These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 24912240)
1. Comparing anthracene and fluorene degradation in anthracene and fluorene-contaminated soil by single and mixed plant cultivation. Somtrakoon K; Chouychai W; Lee H Int J Phytoremediation; 2014; 16(4):415-28. PubMed ID: 24912240 [TBL] [Abstract][Full Text] [Related]
2. Growth and Phytoremediation Efficiency of Winged Bean in Fluorene- and Pyrene-Contaminated Soil. Chouychai W; Swangying T; Somtrakoon K; Lee H Bull Environ Contam Toxicol; 2018 Nov; 101(5):631-636. PubMed ID: 30368575 [TBL] [Abstract][Full Text] [Related]
3. Removal of Anthracene and Fluoranthene by Waxy Corn, Long Bean and Okra in Lead-Contaminated Soil. Somtrakoon K; Chouychai W; Lee H Bull Environ Contam Toxicol; 2015 Sep; 95(3):407-13. PubMed ID: 26149081 [TBL] [Abstract][Full Text] [Related]
4. A comparative study to evaluate natural attenuation, mycoaugmentation, phytoremediation, and microbial-assisted phytoremediation strategies for the bioremediation of an aged PAH-polluted soil. García-Sánchez M; Košnář Z; Mercl F; Aranda E; Tlustoš P Ecotoxicol Environ Saf; 2018 Jan; 147():165-174. PubMed ID: 28843188 [TBL] [Abstract][Full Text] [Related]
5. Rhizosphere effects of PAH-contaminated soil phytoremediation using a special plant named Fire Phoenix. Liu R; Xiao N; Wei S; Zhao L; An J Sci Total Environ; 2014 Mar; 473-474():350-8. PubMed ID: 24374595 [TBL] [Abstract][Full Text] [Related]
6. Influence of catclaw Mimosa monancistra on the dissipation of soil PAHs. Alvarez-Bernal D; Contreras-Ramos S; Marsch R; Dendooven L Int J Phytoremediation; 2007; 9(2):79-90. PubMed ID: 18246717 [TBL] [Abstract][Full Text] [Related]
7. Uptake of selected PAHs from contaminated soils by rice seedlings (Oryza sativa) and influence of rhizosphere on PAH distribution. Su YH; Zhu YG Environ Pollut; 2008 Sep; 155(2):359-65. PubMed ID: 18331768 [TBL] [Abstract][Full Text] [Related]
8. Ability of natural attenuation and phytoremediation using maize (Zea mays L.) to decrease soil contents of polycyclic aromatic hydrocarbons (PAHs) derived from biomass fly ash in comparison with PAHs-spiked soil. Košnář Z; Mercl F; Tlustoš P Ecotoxicol Environ Saf; 2018 May; 153():16-22. PubMed ID: 29407733 [TBL] [Abstract][Full Text] [Related]
9. Effectiveness of the Zea mays-Streptomyces association for the phytoremediation of petroleum hydrocarbons impacted soils. Baoune H; Aparicio JD; Acuña A; El Hadj-Khelil AO; Sanchez L; Polti MA; Alvarez A Ecotoxicol Environ Saf; 2019 Nov; 184():109591. PubMed ID: 31514081 [TBL] [Abstract][Full Text] [Related]
10. Effects of rapeseed oil on the rhizodegradation of polyaromatic hydrocarbons in contaminated soil. Gartler J; Wimmer B; Soja G; Reichenauer TG Int J Phytoremediation; 2014; 16(7-12):671-83. PubMed ID: 24933877 [TBL] [Abstract][Full Text] [Related]
11. Plant uptake of aldicarb from contaminated soil and its enhanced degradation in the rhizosphere. Sun H; Xu J; Yang S; Liu G; Dai S Chemosphere; 2004 Jan; 54(4):569-74. PubMed ID: 14581059 [TBL] [Abstract][Full Text] [Related]
12. Plant--rhizosphere-microflora association during phytoremediation of PAH-contaminated soil. Muratova A; Hūbner T; Tischer S; Turkovskaya O; Möder M; Kuschk P Int J Phytoremediation; 2003; 5(2):137-51. PubMed ID: 12929496 [TBL] [Abstract][Full Text] [Related]
13. Effect of rhizosphere enzymes on phytoremediation in PAH-contaminated soil using five plant species. Liu R; Dai Y; Sun L PLoS One; 2015; 10(3):e0120369. PubMed ID: 25822167 [TBL] [Abstract][Full Text] [Related]
14. Mixing of an anthracene-contaminated soil: a simple but efficient remediation technique? Delgado-Balbuena L; Aguilar-Chávez ÁR; Luna-Guido ML; Dendooven L Ecotoxicol Environ Saf; 2013 Oct; 96():238-41. PubMed ID: 23896178 [TBL] [Abstract][Full Text] [Related]
15. Comparison of plant families in a greenhouse phytoremediation study on an aged polycyclic aromatic hydrocarbon-contaminated soil. Olson PE; Castro A; Joern M; DuTeau NM; Pilon-Smits EA; Reardon KF J Environ Qual; 2007; 36(5):1461-9. PubMed ID: 17766825 [TBL] [Abstract][Full Text] [Related]
16. Phytoextraction of metals and rhizoremediation of PAHs in co-contaminated soil by co-planting of Sedum alfredii with ryegrass (Lolium perenne) or castor (Ricinus communis). Wang K; Huang H; Zhu Z; Li T; He Z; Yang X; Alva A Int J Phytoremediation; 2013; 15(3):283-98. PubMed ID: 23488013 [TBL] [Abstract][Full Text] [Related]
17. Phytoextraction of weathered p,p'-DDE by zucchini (Cucurbita pepo) and cucumber (Cucumis sativus) under different cultivation conditions. Wang X; White JC; Gent MP; Iannucci-Berger W; Eitzer BD; Mattina MI Int J Phytoremediation; 2004; 6(4):363-85. PubMed ID: 15696707 [TBL] [Abstract][Full Text] [Related]
18. Dissipation of polycyclic aromatic hydrocarbons (PAHs) in the rhizosphere: synthesis through meta-analysis. Ma B; He Y; Chen HH; Xu JM; Rengel Z Environ Pollut; 2010 Mar; 158(3):855-61. PubMed ID: 19854547 [TBL] [Abstract][Full Text] [Related]
19. Effectiveness of phytoremediation as a secondary treatment for polycyclic aromatic hydrocarbons (PAHs) in composted soil. Parrish ZD; Banks MK; Schwab AP Int J Phytoremediation; 2004; 6(2):119-37. PubMed ID: 15328979 [TBL] [Abstract][Full Text] [Related]
20. Impact of plant photosystems in the remediation of benzo[a]pyrene and pyrene spiked soils. Sivaram AK; Logeshwaran P; Lockington R; Naidu R; Megharaj M Chemosphere; 2018 Feb; 193():625-634. PubMed ID: 29175394 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]