BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 24912241)

  • 1. Constructed wetlands as green tools for management of boron mine wastewater.
    Türker OC; Türe C; Böcük H; Yakar A
    Int J Phytoremediation; 2014; 16(6):537-53. PubMed ID: 24912241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The phytoremediation ability of a polyculture constructed wetland to treat boron from mine effluent.
    Türker OC; Böcük H; Yakar A
    J Hazard Mater; 2013 May; 252-253():132-41. PubMed ID: 23500796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Treatment of industrial wastewater with two-stage constructed wetlands planted with Typha latifolia and Phragmites australis.
    Calheiros CS; Rangel AO; Castro PM
    Bioresour Technol; 2009 Jul; 100(13):3205-13. PubMed ID: 19289277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constructed wetland systems vegetated with different plants applied to the treatment of tannery wastewater.
    Calheiros CS; Rangel AO; Castro PM
    Water Res; 2007 Apr; 41(8):1790-8. PubMed ID: 17320926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitrous oxide emission from polyculture constructed wetlands: effect of plant species.
    Wang Y; Inamori R; Kong H; Xu K; Inamori Y; Kondo T; Zhang J
    Environ Pollut; 2008 Mar; 152(2):351-60. PubMed ID: 17655987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Remediation of mercury-polluted soils using artificial wetlands.
    García-Mercadoa HD; Fernándezb G; Garzón-Zúñigac MA; Durán-Domínguez-de-Bazúaa MD
    Int J Phytoremediation; 2017 Jan; 19(1):3-13. PubMed ID: 27484186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of an innovative approach based on prototype engineered wetland to control and manage boron (B) mine effluent pollution.
    Türker OC; Türe C; Böcük H; Yakar A; Chen Y
    Environ Sci Pollut Res Int; 2016 Oct; 23(19):19302-16. PubMed ID: 27364490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparative study of five horizontal subsurface flow constructed wetlands using different plant species for domestic wastewater treatment.
    Villaseñor Camacho J; De Lucas Martínez A; Gómez Gómez R; Mena Sanz J
    Environ Technol; 2007 Dec; 28(12):1333-43. PubMed ID: 18341144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phytoremediation of an integrated poultry and aquaculture wastewater using sub-surface constructed wetland planted with
    Akadiri SA; Dada PO; Badejo AA; Adeosun OJ; Ogunrinde AT; Faloye OT
    Int J Phytoremediation; 2024 May; 26(7):1133-1143. PubMed ID: 38140944
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal accumulation from leachate by polyculture in crushed brick and steel slag using pilot-scale constructed wetland in the climate of Pakistan.
    Batool A
    Environ Sci Pollut Res Int; 2019 Oct; 26(30):31508-31521. PubMed ID: 31478177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A constructed wetland model for synthetic reactive dye wastewater treatment by narrow-leaved cattails (Typha angustifolia Linn.).
    Nilratnisakorn S; Thiravetyan P; Nakbanpote W
    Water Sci Technol; 2009; 60(6):1565-74. PubMed ID: 19759459
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accumulation of metals in a horizontal subsurface flow constructed wetland treating domestic wastewater in Flanders, Belgium.
    Lesage E; Rousseau DP; Meers E; Tack FM; De Pauw N
    Sci Total Environ; 2007 Jul; 380(1-3):102-15. PubMed ID: 17240426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phytoremediation of selenium using subsurface-flow constructed wetland.
    Azaizeh H; Salhani N; Sebesvari Z; Shardendu S; Emons H
    Int J Phytoremediation; 2006; 8(3):187-98. PubMed ID: 17120524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of plant species on water quality at the outlet of a sludge treatment wetland.
    Gagnon V; Chazarenc F; Kõiv M; Brisson J
    Water Res; 2012 Oct; 46(16):5305-15. PubMed ID: 22828383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temporal evolution in PPCP removal from urban wastewater by constructed wetlands of different configuration: a medium-term study.
    Reyes-Contreras C; Hijosa-Valsero M; Sidrach-Cardona R; Bayona JM; Bécares E
    Chemosphere; 2012 Jun; 88(2):161-7. PubMed ID: 22436587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of Ageratum conyzoides in field scale constructed wetlands (CWs) for domestic wastewater treatment.
    Tilak AS; Wani SP; Datta A; Patil MD; Kaushal M; Reddy KR
    Water Sci Technol; 2017 May; 75(10):2268-2280. PubMed ID: 28541934
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of different plant species on nutrient removal and rhizospheric microorganisms distribution in horizontal-flow constructed wetlands.
    Meng P; Hu W; Pei H; Hou Q; Ji Y
    Environ Technol; 2014; 35(5-8):808-16. PubMed ID: 24645463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Constructed wetlands for wastewater treatment: five decades of experience.
    Vymazal J
    Environ Sci Technol; 2011 Jan; 45(1):61-9. PubMed ID: 20795704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accumulation of Metals and Boron in Phragmites australis Planted in Constructed Wetlands Polishing Real Electroplating Wastewater.
    Sochacki A; Guy B; Faure O; Surmacz-Górska J
    Int J Phytoremediation; 2015; 17(11):1068-72. PubMed ID: 25848916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of plant biomass on nitrogen transformation in subsurface-batch constructed wetlands: a stable isotope and mass balance assessment.
    Chen Y; Wen Y; Zhou Q; Vymazal J
    Water Res; 2014 Oct; 63():158-67. PubMed ID: 25000198
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.