BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 24912499)

  • 1. REGNET: mining context-specific human transcription networks using composite genomic information.
    Chi SM; Seo YK; Park YK; Yoon S; Park CY; Kim YS; Kim SY; Nam D
    BMC Genomics; 2014 Jun; 15(1):450. PubMed ID: 24912499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An ensemble learning approach to reverse-engineering transcriptional regulatory networks from time-series gene expression data.
    Ruan J; Deng Y; Perkins EJ; Zhang W
    BMC Genomics; 2009 Jul; 10 Suppl 1(Suppl 1):S8. PubMed ID: 19594885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inferring gene regression networks with model trees.
    Nepomuceno-Chamorro IA; Aguilar-Ruiz JS; Riquelme JC
    BMC Bioinformatics; 2010 Oct; 11():517. PubMed ID: 20950452
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computer-assisted identification of cell cycle-related genes: new targets for E2F transcription factors.
    Kel AE; Kel-Margoulis OV; Farnham PJ; Bartley SM; Wingender E; Zhang MQ
    J Mol Biol; 2001 May; 309(1):99-120. PubMed ID: 11491305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting distinct organization of transcription factor binding sites on the promoter regions: a new genome-based approach to expand human embryonic stem cell regulatory network.
    Hosseinpour B; Bakhtiarizadeh MR; Khosravi P; Ebrahimie E
    Gene; 2013 Dec; 531(2):212-9. PubMed ID: 24042128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Constructing tissue-specific transcriptional regulatory networks via a Markov random field.
    Ma S; Jiang T; Jiang R
    BMC Genomics; 2018 Dec; 19(Suppl 10):884. PubMed ID: 30598101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. COPS: detecting co-occurrence and spatial arrangement of transcription factor binding motifs in genome-wide datasets.
    Ha N; Polychronidou M; Lohmann I
    PLoS One; 2012; 7(12):e52055. PubMed ID: 23272209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative analysis of the Drosophila segmentation regulatory network using pattern generating potentials.
    Kazemian M; Blatti C; Richards A; McCutchan M; Wakabayashi-Ito N; Hammonds AS; Celniker SE; Kumar S; Wolfe SA; Brodsky MH; Sinha S
    PLoS Biol; 2010 Aug; 8(8):. PubMed ID: 20808951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systematic identification of transcriptional and post-transcriptional regulations in human respiratory epithelial cells during influenza A virus infection.
    Liu ZP; Wu H; Zhu J; Miao H
    BMC Bioinformatics; 2014 Oct; 15(1):336. PubMed ID: 25281301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcription Factor-Binding Site Identification and Enrichment Analysis.
    Guy JL; Mor GG
    Methods Mol Biol; 2021; 2255():241-261. PubMed ID: 34033108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide prediction of transcriptional regulatory elements of human promoters using gene expression and promoter analysis data.
    Kim SY; Kim Y
    BMC Bioinformatics; 2006 Jul; 7():330. PubMed ID: 16817975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MIR@NT@N: a framework integrating transcription factors, microRNAs and their targets to identify sub-network motifs in a meta-regulation network model.
    Le Béchec A; Portales-Casamar E; Vetter G; Moes M; Zindy PJ; Saumet A; Arenillas D; Theillet C; Wasserman WW; Lecellier CH; Friederich E
    BMC Bioinformatics; 2011 Mar; 12():67. PubMed ID: 21375730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RegNetwork: an integrated database of transcriptional and post-transcriptional regulatory networks in human and mouse.
    Liu ZP; Wu C; Miao H; Wu H
    Database (Oxford); 2015; 2015():. PubMed ID: 26424082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A computational genomics approach to identify cis-regulatory modules from chromatin immunoprecipitation microarray data--a case study using E2F1.
    Jin VX; Rabinovich A; Squazzo SL; Green R; Farnham PJ
    Genome Res; 2006 Dec; 16(12):1585-95. PubMed ID: 17053090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inferring transcription factor collaborations in gene regulatory networks.
    Awad S; Chen J
    BMC Syst Biol; 2014; 8 Suppl 1(Suppl 1):S1. PubMed ID: 24565025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CoRegNet: reconstruction and integrated analysis of co-regulatory networks.
    Nicolle R; Radvanyi F; Elati M
    Bioinformatics; 2015 Sep; 31(18):3066-8. PubMed ID: 25979476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational inference of transcriptional regulatory networks from expression profiling and transcription factor binding site identification.
    Haverty PM; Hansen U; Weng Z
    Nucleic Acids Res; 2004; 32(1):179-88. PubMed ID: 14704355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RTFAdb: A database of computationally predicted associations between retrotransposons and transcription factors in the human and mouse genomes.
    Karakülah G
    Genomics; 2018 Sep; 110(5):257-262. PubMed ID: 29155231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ab initio identification of putative human transcription factor binding sites by comparative genomics.
    Corà D; Herrmann C; Dieterich C; Di Cunto F; Provero P; Caselle M
    BMC Bioinformatics; 2005 May; 6():110. PubMed ID: 15865625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide in silico identification of transcriptional regulators controlling the cell cycle in human cells.
    Elkon R; Linhart C; Sharan R; Shamir R; Shiloh Y
    Genome Res; 2003 May; 13(5):773-80. PubMed ID: 12727897
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.