These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
552 related articles for article (PubMed ID: 24912505)
1. Biological and medical applications of a brain-on-a-chip. Pamies D; Hartung T; Hogberg HT Exp Biol Med (Maywood); 2014 Sep; 239(9):1096-1107. PubMed ID: 24912505 [TBL] [Abstract][Full Text] [Related]
2. Fitting tissue chips and microphysiological systems into the grand scheme of medicine, biology, pharmacology, and toxicology. Watson DE; Hunziker R; Wikswo JP Exp Biol Med (Maywood); 2017 Oct; 242(16):1559-1572. PubMed ID: 29065799 [TBL] [Abstract][Full Text] [Related]
3. Studying Human Neurological Disorders Using Induced Pluripotent Stem Cells: From 2D Monolayer to 3D Organoid and Blood Brain Barrier Models. Logan S; Arzua T; Canfield SG; Seminary ER; Sison SL; Ebert AD; Bai X Compr Physiol; 2019 Mar; 9(2):565-611. PubMed ID: 30873582 [TBL] [Abstract][Full Text] [Related]
4. Three-dimensional models for studying development and disease: moving on from organisms to organs-on-a-chip and organoids. Jackson EL; Lu H Integr Biol (Camb); 2016 Jun; 8(6):672-83. PubMed ID: 27156572 [TBL] [Abstract][Full Text] [Related]
5. Brain-on-a-Chip: A Human 3D Model for Clinical Application. Muzzi L; Martinoia S; Frega M Stud Health Technol Inform; 2019; 261():274-279. PubMed ID: 31156129 [TBL] [Abstract][Full Text] [Related]
6. Human iPSC-Based Modeling of Central Nerve System Disorders for Drug Discovery. Qian L; Tcw J Int J Mol Sci; 2021 Jan; 22(3):. PubMed ID: 33530458 [TBL] [Abstract][Full Text] [Related]
7. Review: 3D cell models for organ-on-a-chip applications. Żuchowska A; Baranowska P; Flont M; Brzózka Z; Jastrzębska E Anal Chim Acta; 2024 May; 1301():342413. PubMed ID: 38553129 [TBL] [Abstract][Full Text] [Related]
8. Organ-on-chip models: Implications in drug discovery and clinical applications. Mittal R; Woo FW; Castro CS; Cohen MA; Karanxha J; Mittal J; Chhibber T; Jhaveri VM J Cell Physiol; 2019 Jun; 234(6):8352-8380. PubMed ID: 30443904 [TBL] [Abstract][Full Text] [Related]
9. Organ-on-a-chip: A new tool for in vitro research. Yan J; Li Z; Guo J; Liu S; Guo J Biosens Bioelectron; 2022 Nov; 216():114626. PubMed ID: 35969963 [TBL] [Abstract][Full Text] [Related]
10. Advances in 3D neuronal microphysiological systems: towards a functional nervous system on a chip. Anderson WA; Bosak A; Hogberg HT; Hartung T; Moore MJ In Vitro Cell Dev Biol Anim; 2021 Feb; 57(2):191-206. PubMed ID: 33438114 [TBL] [Abstract][Full Text] [Related]
11. Microphysiological systems in early stage drug development: Perspectives on current applications and future impact. Kopec AK; Yokokawa R; Khan N; Horii I; Finley JE; Bono CP; Donovan C; Roy J; Harney J; Burdick AD; Jessen B; Lu S; Collinge M; Sadeghian RB; Derzi M; Tomlinson L; Burkhardt JE J Toxicol Sci; 2021; 46(3):99-114. PubMed ID: 33642521 [TBL] [Abstract][Full Text] [Related]
12. Microfluidic Brain-on-a-Chip: Perspectives for Mimicking Neural System Disorders. Mofazzal Jahromi MA; Abdoli A; Rahmanian M; Bardania H; Bayandori M; Moosavi Basri SM; Kalbasi A; Aref AR; Karimi M; Hamblin MR Mol Neurobiol; 2019 Dec; 56(12):8489-8512. PubMed ID: 31264092 [TBL] [Abstract][Full Text] [Related]
13. Advances in microfluidic in vitro systems for neurological disease modeling. Holloway PM; Willaime-Morawek S; Siow R; Barber M; Owens RM; Sharma AD; Rowan W; Hill E; Zagnoni M J Neurosci Res; 2021 May; 99(5):1276-1307. PubMed ID: 33583054 [TBL] [Abstract][Full Text] [Related]
14. Cultivating human tissues and organs over lab-on-a-chip models: Recent progress and applications. Bhagat S; Singh S Prog Mol Biol Transl Sci; 2022; 187(1):205-240. PubMed ID: 35094775 [TBL] [Abstract][Full Text] [Related]
15. Biology-inspired microphysiological systems to advance patient benefit and animal welfare in drug development. Marx U; Akabane T; Andersson TB; Baker E; Beilmann M; Beken S; Brendler-Schwaab S; Cirit M; David R; Dehne EM; Durieux I; Ewart L; Fitzpatrick SC; Frey O; Fuchs F; Griffith LG; Hamilton GA; Hartung T; Hoeng J; Hogberg H; Hughes DJ; Ingber DE; Iskandar A; Kanamori T; Kojima H; Kuehnl J; Leist M; Li B; Loskill P; Mendrick DL; Neumann T; Pallocca G; Rusyn I; Smirnova L; Steger-Hartmann T; Tagle DA; Tonevitsky A; Tsyb S; Trapecar M; Van de Water B; Van den Eijnden-van Raaij J; Vulto P; Watanabe K; Wolf A; Zhou X; Roth A ALTEX; 2020; 37(3):365-394. PubMed ID: 32113184 [TBL] [Abstract][Full Text] [Related]
16. Basic models to advanced systems: harnessing the power of organoids-based microphysiological models of the human brain. Boylin K; Aquino GV; Purdon M; Abedi K; Kasendra M; Barrile R Biofabrication; 2024 May; 16(3):. PubMed ID: 38749420 [TBL] [Abstract][Full Text] [Related]
17. Biomaterials and Culture Systems for Development of Organoid and Organ-on-a-Chip Models. D'Costa K; Kosic M; Lam A; Moradipour A; Zhao Y; Radisic M Ann Biomed Eng; 2020 Jul; 48(7):2002-2027. PubMed ID: 32285341 [TBL] [Abstract][Full Text] [Related]
18. 3D cell culture models and organ-on-a-chip: Meet separation science and mass spectrometry. Lin A; Sved Skottvoll F; Rayner S; Pedersen-Bjergaard S; Sullivan G; Krauss S; Ray Wilson S; Harrison S Electrophoresis; 2020 Jan; 41(1-2):56-64. PubMed ID: 31544246 [TBL] [Abstract][Full Text] [Related]
19. Human brain organoid-on-a-chip to model prenatal nicotine exposure. Wang Y; Wang L; Zhu Y; Qin J Lab Chip; 2018 Mar; 18(6):851-860. PubMed ID: 29437173 [TBL] [Abstract][Full Text] [Related]
20. Applications of microphysiological systems to disease models in the biopharmaceutical industry: Opportunities and challenges. Irrechukwu O; Yeager R; David R; Ekert J; Saravanakumar A; Choi CK ALTEX; 2023; 40(3):485-518. PubMed ID: 36648096 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]