BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 24912766)

  • 1. Passive stiffness of coupled wrist and forearm rotations.
    Drake WB; Charles SK
    Ann Biomed Eng; 2014 Sep; 42(9):1853-66. PubMed ID: 24912766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of wrist and forearm rotations.
    Peaden AW; Charles SK
    J Biomech; 2014 Aug; 47(11):2779-85. PubMed ID: 24745814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The passive stiffness of the wrist and forearm.
    Formica D; Charles SK; Zollo L; Guglielmelli E; Hogan N; Krebs HI
    J Neurophysiol; 2012 Aug; 108(4):1158-66. PubMed ID: 22649208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of wrist rotations.
    Charles SK; Hogan N
    J Biomech; 2011 Feb; 44(4):614-21. PubMed ID: 21130996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of redundant pointing movements involving the wrist and forearm.
    Dorman GR; Davis KC; Peaden AW; Charles SK
    J Neurophysiol; 2018 Oct; 120(4):2138-2154. PubMed ID: 29947599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Normal functional range of motion of upper limb joints during performance of three feeding activities.
    Safaee-Rad R; Shwedyk E; Quanbury AO; Cooper JE
    Arch Phys Med Rehabil; 1990 Jun; 71(7):505-9. PubMed ID: 2350221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupling between wrist flexion-extension and radial-ulnar deviation.
    Li ZM; Kuxhaus L; Fisk JA; Christophel TH
    Clin Biomech (Bristol, Avon); 2005 Feb; 20(2):177-83. PubMed ID: 15621323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stiffness, not inertial coupling, determines path curvature of wrist motions.
    Charles SK; Hogan N
    J Neurophysiol; 2012 Feb; 107(4):1230-40. PubMed ID: 22131378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wrist rotations about one or two axes affect maximum wrist strength.
    Plewa K; Potvin JR; Dickey JP
    Appl Ergon; 2016 Mar; 53 Pt A():152-60. PubMed ID: 26453535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validation of the Leap Motion Controller using markered motion capture technology.
    Smeragliuolo AH; Hill NJ; Disla L; Putrino D
    J Biomech; 2016 Jun; 49(9):1742-1750. PubMed ID: 27102160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Position-dependent characterization of passive wrist stiffness.
    Pando AL; Lee H; Drake WB; Hogan N; Charles SK
    IEEE Trans Biomed Eng; 2014 Aug; 61(8):2235-44. PubMed ID: 24686225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How much can carpus rotate axially? An in vivo study.
    Gupta A; Moosawi NA
    Clin Biomech (Bristol, Avon); 2005 Feb; 20(2):172-6. PubMed ID: 15621322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A musculoskeletal model to estimate the relative changes in wrist strength due to interacting wrist and forearm postures.
    La Delfa NJ; Potvin JR
    Comput Methods Biomech Biomed Engin; 2017 Oct; 20(13):1403-1411. PubMed ID: 28836461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of tracking marker locations on three-dimensional wrist kinematics.
    Turner J; Forrester SE; Mears AC; Roberts JR
    J Sci Med Sport; 2020 Oct; 23(10):985-990. PubMed ID: 32284293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Vivo Estimation of Human Forearm and Wrist Dynamic Properties.
    Park K; Chang PH; Kang SH
    IEEE Trans Neural Syst Rehabil Eng; 2017 May; 25(5):436-446. PubMed ID: 27249835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interlimb differences in coordination of rapid wrist/forearm movements.
    Srinivasan GA; Embar T; Sainburg R
    Exp Brain Res; 2020 Mar; 238(3):713-725. PubMed ID: 32060564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of wrist flexion and extension torques in different forearm positions.
    Yoshii Y; Yuine H; Kazuki O; Tung WL; Ishii T
    Biomed Eng Online; 2015 Dec; 14():115. PubMed ID: 26830913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantifying forearm and wrist joint power during unconstrained movements in healthy individuals.
    Flores DC; Laurendeau S; Teasdale N; Simoneau M
    J Neuroeng Rehabil; 2014 Nov; 11():157. PubMed ID: 25403340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo estimation of the short-range stiffness of cross-bridges from joint rotation.
    van Eesbeek S; de Groot JH; van der Helm FC; de Vlugt E
    J Biomech; 2010 Sep; 43(13):2539-47. PubMed ID: 20541761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Co-contraction of the pronator teres and extensor carpi radialis during wrist extension movements in humans.
    Fujii H; Kobayashi S; Sato T; Shinozaki K; Naito A
    J Electromyogr Kinesiol; 2007 Feb; 17(1):80-9. PubMed ID: 16516494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.