BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 24912775)

  • 21. Flower vs. leaf feeding by Pieris brassicae: glucosinolate-rich flower tissues are preferred and sustain higher growth rate.
    Smallegange RC; van Loon JJ; Blatt SE; Harvey JA; Agerbirk N; Dicke M
    J Chem Ecol; 2007 Oct; 33(10):1831-44. PubMed ID: 17828429
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A comparative study of flavonoid compounds, vitamin C, and antioxidant properties of baby leaf Brassicaceae species.
    Martínez-Sánchez A; Gil-Izquierdo A; Gil MI; Ferreres F
    J Agric Food Chem; 2008 Apr; 56(7):2330-40. PubMed ID: 18321050
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Seasonal changes and effect of harvest on glucosinolates in Isatis leaves.
    Mohn T; Suter K; Hamburger M
    Planta Med; 2008 Apr; 74(5):582-7. PubMed ID: 18543155
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Red Light Is Effective in Reducing Nitrate Concentration in Rocket by Increasing Nitrate Reductase Activity, and Contributes to Increased Total Glucosinolates Content.
    Signore A; Bell L; Santamaria P; Wagstaff C; Van Labeke MC
    Front Plant Sci; 2020; 11():604. PubMed ID: 32477393
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Salt-Affected Rocket Plants as a Possible Source of Glucosinolates.
    Corti E; Falsini S; Gonnelli C; Pieraccini G; Nako B; Papini A
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982584
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Health-promoting compounds in broccoli as influenced by refrigerated transport and retail sale period.
    Vallejo F; Tomas-Barberan F; Garcia-Viguera C
    J Agric Food Chem; 2003 May; 51(10):3029-34. PubMed ID: 12720387
    [TBL] [Abstract][Full Text] [Related]  

  • 27. FTIR spectroscopy as a tool to detect contamination of rocket (Eruca sativa and Diplotaxis tenuifolia) salad with common groundsel (Senecio vulgaris) leaves.
    Kokalj M; Prikeržnik M; Kreft S
    J Sci Food Agric; 2017 May; 97(7):2238-2244. PubMed ID: 27620169
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Glucoraphanin and 4-hydroxyglucobrassicin contents in seeds of 59 cultivars of broccoli, raab, kohlrabi, radish, cauliflower, brussels sprouts, kale, and cabbage.
    West LG; Meyer KA; Balch BA; Rossi FJ; Schultz MR; Haas GW
    J Agric Food Chem; 2004 Feb; 52(4):916-26. PubMed ID: 14969551
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rocket (
    Mužek MN; Burčul F; Omanović D; Đulović A; Svilović S; Blažević I
    Molecules; 2022 Jan; 27(3):. PubMed ID: 35163976
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of glucosinolates on the leaf surface of plants from the Cruciferae and other closely related species.
    Griffiths DW; Deighton N; Birch AN; Patrian B; Baur R; Städler E
    Phytochemistry; 2001 Jul; 57(5):693-700. PubMed ID: 11397436
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantification and in vitro bioaccessibility of glucosinolates and trace elements in Brassicaceae leafy vegetables.
    Cámara-Martos F; Obregón-Cano S; Mesa-Plata O; Cartea-González ME; de Haro-Bailón A
    Food Chem; 2021 Mar; 339():127860. PubMed ID: 32866700
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Isolation and structural elucidation of 4-(beta-D-glucopyranosyldisulfanyl)butyl glucosinolate from leaves of rocket salad (Eruca sativa L.) and its antioxidative activity.
    Kim SJ; Jin S; Ishii G
    Biosci Biotechnol Biochem; 2004 Dec; 68(12):2444-50. PubMed ID: 15618613
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simultaneous direct determination of 15 glucosinolates in eight Brassica species by UHPLC-Q-Orbitrap-MS.
    Hwang IM; Park B; Dang YM; Kim SY; Seo HY
    Food Chem; 2019 Jun; 282():127-133. PubMed ID: 30711096
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural elucidation of 4-(cystein-S-yl)butyl glucosinolate from the leaves of Eruca sativa.
    Kim SJ; Kawaharada C; Jin S; Hashimoto M; Ishii G; Yamauchi H
    Biosci Biotechnol Biochem; 2007 Jan; 71(1):114-21. PubMed ID: 17213676
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Growth temperature influences postharvest glucosinolate concentrations and hydrolysis product formation in first and second cuts of rocket salad.
    Jasper J; Wagstaff C; Bell L
    Postharvest Biol Technol; 2020 May; 163():111157. PubMed ID: 32362723
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Combined effect of Nitrogen, Phosphorus and Potassium fertilizers on the contents of glucosinolates in rocket salad (
    Chun JH; Kim S; Arasu MV; Al-Dhabi NA; Chung DY; Kim SJ
    Saudi J Biol Sci; 2017 Feb; 24(2):436-443. PubMed ID: 28149184
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Profile and quantification of glucosinolates in Pentadiplandra brazzeana Baillon.
    De Nicola GR; Nyegue M; Montaut S; Iori R; Menut C; Tatibouët A; Rollin P; Ndoyé C; Zollo PH
    Phytochemistry; 2012 Jan; 73(1):51-6. PubMed ID: 21993210
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of seven salad rocket (Eruca sativa) accessions: The relationships between sensory attributes and volatile and non-volatile compounds.
    Bell L; Methven L; Signore A; Oruna-Concha MJ; Wagstaff C
    Food Chem; 2017 Mar; 218():181-191. PubMed ID: 27719896
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mass spectrometry imaging of glucosinolates in Arabidopsis flowers and siliques.
    Sarsby J; Towers MW; Stain C; Cramer R; Koroleva OA
    Phytochemistry; 2012 May; 77():110-8. PubMed ID: 22386577
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assessment of Wild Rocket (
    Reis JM; Pereira RJ; Coelho PS; Leitão JM
    Plants (Basel); 2022 Dec; 11(24):. PubMed ID: 36559594
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.