These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 24913490)

  • 1. Driver's behavioral adaptation to adaptive cruise control (ACC): the case of speed and time headway.
    Bianchi Piccinini GF; Rodrigues CM; Leitão M; Simões A
    J Safety Res; 2014 Jun; 49():77-84. PubMed ID: 24913490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use patterns among early adopters of adaptive cruise control.
    Xiong H; Boyle LN; Moeckli J; Dow BR; Brown TL
    Hum Factors; 2012 Oct; 54(5):722-33. PubMed ID: 23156618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Usability testing of three visual HMIs for assisted driving: How design impacts driver distraction and mental models.
    Perrier MJR; Louw TL; Carsten OMJ
    Ergonomics; 2023 Aug; 66(8):1142-1163. PubMed ID: 36259259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heavy-truck drivers' following behavior with intervention of an integrated, in-vehicle crash warning system: a field evaluation.
    Bao S; LeBlanc DJ; Sayer JR; Flannagan C
    Hum Factors; 2012 Oct; 54(5):687-97. PubMed ID: 23156615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. LAVIA--an evaluation of the potential safety benefits of the French intelligent speed adaptation project.
    Driscoll R; Page Y; Lassarre S; Ehrlich J
    Annu Proc Assoc Adv Automot Med; 2007; 51():485-505. PubMed ID: 18184509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of in-vehicle tasks and time-gap selection while reclaiming control from adaptive cruise control (ACC) with bus simulator.
    Lin TW; Hwang SL; Su JM; Chen WH
    Accid Anal Prev; 2008 May; 40(3):1164-70. PubMed ID: 18460385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Longitudinal safety impacts of cooperative adaptive cruise control vehicle's degradation.
    Tu Y; Wang W; Li Y; Xu C; Xu T; Li X
    J Safety Res; 2019 Jun; 69():177-192. PubMed ID: 31235228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fatal crash between a car operating with automated control systems and a tractor-semitrailer truck.
    Poland K; McKay MP; Bruce D; Becic E
    Traffic Inj Prev; 2018; 19(sup2):S153-S156. PubMed ID: 30841795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reducing the risk of rear-end collisions with infrastructure-to-vehicle (I2V) integration of variable speed limit control and adaptive cruise control system.
    Li Y; Wang H; Wang W; Liu S; Xiang Y
    Traffic Inj Prev; 2016 Aug; 17(6):597-603. PubMed ID: 26761633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mobile Phone Use in a Car-Following Situation: Impact on Time Headway and Effectiveness of Driver's Rear-End Risk Compensation Behavior via a Driving Simulator Study.
    Chen Y; Fu R; Xu Q; Yuan W
    Int J Environ Res Public Health; 2020 Feb; 17(4):. PubMed ID: 32092914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A rear-end collision risk assessment model based on drivers' collision avoidance process under influences of cell phone use and gender-A driving simulator based study.
    Li X; Yan X; Wu J; Radwan E; Zhang Y
    Accid Anal Prev; 2016 Dec; 97():1-18. PubMed ID: 27565040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Effects of Vehicle Automation on Driver Engagement: The Case of Adaptive Cruise Control and Mind Wandering.
    Weaver SM; Roldan SM; Gonzalez TB; Balk SA; Philips BH
    Hum Factors; 2022 Sep; 64(6):1086-1098. PubMed ID: 33296230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frequency and Quality of Exposure to Adaptive Cruise Control and Impact on Trust, Workload, and Mental Models.
    Pai G; Zhang F; Hungund AP; Pamarthi J; Roberts SC; Horrey WJ; Pradhan AK
    Accid Anal Prev; 2023 Sep; 190():107130. PubMed ID: 37336048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction driver-bicyclist on rural roads: Effects of cross-sections and road geometric elements.
    Bella F; Silvestri M
    Accid Anal Prev; 2017 May; 102():191-201. PubMed ID: 28319757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Driving Performance and Technology Acceptance Evaluation in Real Traffic of a Smartphone-Based Driver Assistance System.
    Voinea GD; Postelnicu CC; Duguleana M; Mogan GL; Socianu R
    Int J Environ Res Public Health; 2020 Sep; 17(19):. PubMed ID: 32998252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preferred time headway in car-following and individual differences in perceptual-motor skills.
    van Winsum W
    Percept Mot Skills; 1998 Dec; 87(3 Pt 1):863-73. PubMed ID: 9885050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Longer-term effects of ADAS use on speed and headway control in drivers diagnosed with Parkinson's disease.
    Dotzauer M; Caljouw SR; De Waard D; Brouwer WH
    Traffic Inj Prev; 2015; 16(1):10-6. PubMed ID: 24697548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of safety measures on driver's speed behavior at pedestrian crossings.
    Bella F; Silvestri M
    Accid Anal Prev; 2015 Oct; 83():111-24. PubMed ID: 26253423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing driver's mental representation of Adaptive Cruise Control (ACC) and its possible effects on behavioural adaptations.
    Piccinini GF; Simões A; Rodrigues CM; Leitão M
    Work; 2012; 41 Suppl 1():4396-401. PubMed ID: 22317395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experiences of model year 2011 Dodge and Jeep owners with collision avoidance and related technologies.
    Cicchino JB; McCartt AT
    Traffic Inj Prev; 2015; 16():298-303. PubMed ID: 24983299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.