These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 24913612)

  • 1. Hemocompatibility evaluation of small elastomeric hollow fiber membranes as vascular substitutes.
    Mercado-Pagán ÁE; Ker DF; Yang Y
    J Biomater Appl; 2014 Oct; 29(4):557-65. PubMed ID: 24913612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and characterization of polycaprolactone urethane hollow fiber membranes as small diameter vascular grafts.
    Mercado-Pagán ÁE; Stahl AM; Ramseier ML; Behn AW; Yang Y
    Mater Sci Eng C Mater Biol Appl; 2016 Jul; 64():61-73. PubMed ID: 27127029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and evaluation of elastomeric hollow fiber membranes as small diameter vascular graft substitutes.
    Mercado-Pagán ÁE; Kang Y; Findlay MW; Yang Y
    Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():541-548. PubMed ID: 25686982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hemocompatibility evaluation of poly(diol citrate) in vitro for vascular tissue engineering.
    Motlagh D; Allen J; Hoshi R; Yang J; Lui K; Ameer G
    J Biomed Mater Res A; 2007 Sep; 82(4):907-16. PubMed ID: 17335023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved hemodialysis with hemocompatible polyethersulfone hollow fiber membranes: In vitro performance.
    Verma SK; Modi A; Singh AK; Teotia R; Bellare J
    J Biomed Mater Res B Appl Biomater; 2018 Apr; 106(3):1286-1298. PubMed ID: 28636168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro physical and biological characterization of biodegradable elastic polyurethane containing ferulic acid for small-caliber vascular grafts.
    Asadpour S; Ai J; Davoudi P; Ghorbani M; Jalali Monfared M; Ghanbari H
    Biomed Mater; 2018 Mar; 13(3):035007. PubMed ID: 29345244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface-modified bioresorbable electrospun scaffolds for improving hemocompatibility of vascular grafts.
    Caracciolo PC; Rial-Hermida MI; Montini-Ballarin F; Abraham GA; Concheiro A; Alvarez-Lorenzo C
    Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():1115-1127. PubMed ID: 28415397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functionally coated polyethersulfone hollow fiber membranes: A substrate for enhanced HepG2/C3A functions.
    Verma SK; Modi A; Singh AK; Teotia R; Kadam S; Bellare J
    Colloids Surf B Biointerfaces; 2018 Apr; 164():358-369. PubMed ID: 29413617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of the fiber diameter and surface roughness of electrospun vascular grafts on blood activation.
    Milleret V; Hefti T; Hall H; Vogel V; Eberli D
    Acta Biomater; 2012 Dec; 8(12):4349-56. PubMed ID: 22842036
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Copolymers of 2-methacryloyloxyethyl phosphorylcholine (MPC) as biomaterials.
    Nakabayashi N; Iwasaki Y
    Biomed Mater Eng; 2004; 14(4):345-54. PubMed ID: 15472384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene oxide nanosheets and d-α-Tocopheryl polyethylene glycol 1000 succinate (TPGS) doping improves biocompatibility and ultrafiltration in polyethersulfone hollow fiber membranes.
    Modi A; Verma SK; Bellare J
    J Colloid Interface Sci; 2017 Oct; 504():86-100. PubMed ID: 28527829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PDMS content affects in vitro hemocompatibility of synthetic vascular grafts.
    Spiller D; Losi P; Briganti E; Sbrana S; Kull S; Martinelli I; Soldani G
    J Mater Sci Mater Med; 2007 Jun; 18(6):1097-104. PubMed ID: 17268875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Luminal surface microgeometry affects platelet adhesion in small-diameter synthetic grafts.
    Losi P; Lombardi S; Briganti E; Soldani G
    Biomaterials; 2004 Aug; 25(18):4447-55. PubMed ID: 15046935
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication and characterization of permeable degradable poly(DL-lactide-co-glycolide) (PLGA) hollow fiber phase inversion membranes for use as nerve tract guidance channels.
    Wen X; Tresco PA
    Biomaterials; 2006 Jul; 27(20):3800-9. PubMed ID: 16564567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Short fluorocarbon chains containing hydrophobic nanofibrous membranes with improved hemocompatibility, anticoagulation and anti-fouling performance.
    Wang Y; Liu Y; Liu M; Qian W; Zhou D; Liu T; Luo G; Xing M
    Colloids Surf B Biointerfaces; 2019 Aug; 180():49-57. PubMed ID: 31028964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellulose acetate hollow fiber membranes blended with phospholipid polymer and their performance for hemopurification.
    Ye SH; Watanabe J; Ishihara K
    J Biomater Sci Polym Ed; 2004; 15(8):981-1001. PubMed ID: 15461185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro hemocompatibility studies of drug-loaded poly-(L-lactic acid) fibers.
    Nguyen KT; Su SH; Sheng A; Wawro D; Schwade ND; Brouse CF; Greilich PE; Tang L; Eberhart RC
    Biomaterials; 2003 Dec; 24(28):5191-201. PubMed ID: 14568436
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrophilic ZIF-8 decorated GO nanosheets improve biocompatibility and separation performance of polyethersulfone hollow fiber membranes: A potential membrane material for bioartificial liver application.
    Modi A; Verma SK; Bellare J
    Mater Sci Eng C Mater Biol Appl; 2018 Oct; 91():524-540. PubMed ID: 30033284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrospun polyhedral oligomeric silsequioxane-poly(carbonate-urea) urethane for fabrication of hemocompatible small-diameter vascular grafts with angiogenesis capacity.
    Zakeri Z; Salehi R; Rahbarghazi R; Taghipour YD; Mahkam M; Sokullu E
    Int J Biol Macromol; 2024 Oct; 277(Pt 1):134064. PubMed ID: 39048012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of porosity on the hemocompatibility of polyhedral oligomeric silsesquioxane poly (caprolactone-urea) urethane.
    Zhao J; Farhatnia Y; Kalaskar DM; Zhang Y; Bulter PE; Seifalian AM
    Int J Biochem Cell Biol; 2015 Nov; 68():176-86. PubMed ID: 26279141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.