BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 24913626)

  • 1. Microarray analysis of laser-microdissected tissues indicates the biosynthesis of suberin in the outer part of roots during formation of a barrier to radial oxygen loss in rice (Oryza sativa).
    Shiono K; Yamauchi T; Yamazaki S; Mohanty B; Malik AI; Nagamura Y; Nishizawa NK; Tsutsumi N; Colmer TD; Nakazono M
    J Exp Bot; 2014 Sep; 65(17):4795-806. PubMed ID: 24913626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional and chemical comparison of apoplastic barriers to radial oxygen loss in roots of rice (Oryza sativa L.) grown in aerated or deoxygenated solution.
    Kotula L; Ranathunge K; Schreiber L; Steudle E
    J Exp Bot; 2009; 60(7):2155-67. PubMed ID: 19443620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exogenous abscisic acid induces the formation of a suberized barrier to radial oxygen loss in adventitious roots of barley (Hordeum vulgare).
    Shiono K; Matsuura H
    Ann Bot; 2024 May; 133(7):931-940. PubMed ID: 38448365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced formation of aerenchyma and induction of a barrier to radial oxygen loss in adventitious roots of Zea nicaraguensis contribute to its waterlogging tolerance as compared with maize (Zea mays ssp. mays).
    Abiko T; Kotula L; Shiono K; Malik AI; Colmer TD; Nakazono M
    Plant Cell Environ; 2012 Sep; 35(9):1618-30. PubMed ID: 22471697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochemical and molecular characterization of rice (Oryza sativa L.) roots forming a barrier to radial oxygen loss.
    Kulichikhin K; Yamauchi T; Watanabe K; Nakazono M
    Plant Cell Environ; 2014 Oct; 37(10):2406-20. PubMed ID: 24506679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rice acclimation to soil flooding: Low concentrations of organic acids can trigger a barrier to radial oxygen loss in roots.
    Colmer TD; Kotula L; Malik AI; Takahashi H; Konnerup D; Nakazono M; Pedersen O
    Plant Cell Environ; 2019 Jul; 42(7):2183-2197. PubMed ID: 30989660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A major locus involved in the formation of the radial oxygen loss barrier in adventitious roots of teosinte Zea nicaraguensis is located on the short-arm of chromosome 3.
    Watanabe K; Takahashi H; Sato S; Nishiuchi S; Omori F; Malik AI; Colmer TD; Mano Y; Nakazono M
    Plant Cell Environ; 2017 Feb; 40(2):304-316. PubMed ID: 27762444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prevention of Radial Oxygen Loss Is Associated With Exodermal Suberin Along Adventitious Roots of Annual Wild Species of
    Ejiri M; Shiono K
    Front Plant Sci; 2019; 10():254. PubMed ID: 30915090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contrasting dynamics of radial O2-loss barrier induction and aerenchyma formation in rice roots of two lengths.
    Shiono K; Ogawa S; Yamazaki S; Isoda H; Fujimura T; Nakazono M; Colmer TD
    Ann Bot; 2011 Jan; 107(1):89-99. PubMed ID: 21097947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Abscisic acid is required for exodermal suberization to form a barrier to radial oxygen loss in the adventitious roots of rice (Oryza sativa).
    Shiono K; Yoshikawa M; Kreszies T; Yamada S; Hojo Y; Matsuura T; Mori IC; Schreiber L; Yoshioka T
    New Phytol; 2022 Jan; 233(2):655-669. PubMed ID: 34725822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stagnant deoxygenated growth enhances root suberization and lignifications, but differentially affects water and NaCl permeabilities in rice (Oryza sativa L.) roots.
    Ranathunge K; Lin J; Steudle E; Schreiber L
    Plant Cell Environ; 2011 Aug; 34(8):1223-40. PubMed ID: 21414017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RCN1/OsABCG5, an ATP-binding cassette (ABC) transporter, is required for hypodermal suberization of roots in rice (Oryza sativa).
    Shiono K; Ando M; Nishiuchi S; Takahashi H; Watanabe K; Nakamura M; Matsuo Y; Yasuno N; Yamanouchi U; Fujimoto M; Takanashi H; Ranathunge K; Franke RB; Shitan N; Nishizawa NK; Takamure I; Yano M; Tsutsumi N; Schreiber L; Yazaki K; Nakazono M; Kato K
    Plant J; 2014 Oct; 80(1):40-51. PubMed ID: 25041515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water permeability and reflection coefficient of the outer part of young rice roots are differently affected by closure of water channels (aquaporins) or blockage of apoplastic pores.
    Ranathunge K; Kotula L; Steudle E; Lafitte R
    J Exp Bot; 2004 Feb; 55(396):433-47. PubMed ID: 14739266
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ammonium-induced architectural and anatomical changes with altered suberin and lignin levels significantly change water and solute permeabilities of rice (Oryza sativa L.) roots.
    Ranathunge K; Schreiber L; Bi YM; Rothstein SJ
    Planta; 2016 Jan; 243(1):231-49. PubMed ID: 26384983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A barrier to radial oxygen loss helps the root system cope with waterlogging-induced hypoxia.
    Ejiri M; Fukao T; Miyashita T; Shiono K
    Breed Sci; 2021 Feb; 71(1):40-50. PubMed ID: 33762875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of transcription factors involved in rice secondary cell wall formation.
    Hirano K; Kondo M; Aya K; Miyao A; Sato Y; Antonio BA; Namiki N; Nagamura Y; Matsuoka M
    Plant Cell Physiol; 2013 Nov; 54(11):1791-802. PubMed ID: 24089432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Some Accessions of Amazonian Wild Rice (
    Ejiri M; Sawazaki Y; Shiono K
    Plants (Basel); 2020 Jul; 9(7):. PubMed ID: 32668711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low nitrate under waterlogging triggers exodermal suberization to form a barrier to radial oxygen loss in rice roots.
    Shiono K; Ejiri M; Sawazaki Y; Egishi Y; Tsunoda T
    Plant Physiol; 2024 May; ():. PubMed ID: 38761404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The barrier to radial oxygen loss protects roots against hydrogen sulphide intrusion and its toxic effect.
    Peralta Ogorek LL; Takahashi H; Nakazono M; Pedersen O
    New Phytol; 2023 Jun; 238(5):1825-1837. PubMed ID: 36928886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Does suberin accumulation in plant roots contribute to waterlogging tolerance?
    Watanabe K; Nishiuchi S; Kulichikhin K; Nakazono M
    Front Plant Sci; 2013; 4():178. PubMed ID: 23785371
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.