These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 24913900)

  • 1. Effects of the combined substitutions of amino acid residues on thermal properties of cold-adapted monomeric isocitrate dehydrogenases from psychrophilic bacteria.
    Kobayashi M; Takada Y
    Extremophiles; 2014 Jul; 18(4):755-62. PubMed ID: 24913900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of amino acid residues involved in cold activity of monomeric isocitrate dehydrogenase from psychrophilic bacteria, Colwellia maris and Colwellia psychrerythraea.
    Yasuda W; Kobayashi M; Takada Y
    J Biosci Bioeng; 2013 Nov; 116(5):567-72. PubMed ID: 23830032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of the amino acid residues involved in the thermal properties of the monomeric isocitrate dehydrogenases of the psychrophilic bacterium Colwellia maris and the mesophilic bacterium Azotobacter vinelandii.
    Kurihara T; Takada Y
    Biosci Biotechnol Biochem; 2012; 76(12):2242-8. PubMed ID: 23221716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of amino acid residues involved in the thermal properties of isocitrate dehydrogenases from a psychrophilic bacterium, Colwellia maris, and a psychrotrophic bacterium, Pseudomonas psychrophila.
    Nagai S; Takada Y
    J Biosci Bioeng; 2020 Mar; 129(3):284-290. PubMed ID: 31619337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contribution of Three Different Regions of Isocitrate Dehydrogenases from Psychrophilic and Psychrotolerant Bacteria to Their Thermal Properties.
    Mouri Y; Takada Y
    Curr Microbiol; 2018 Nov; 75(11):1523-1529. PubMed ID: 30128841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elucidation of stability determinants of cold-adapted monomeric isocitrate dehydrogenase from a psychrophilic bacterium, Colwellia maris, by construction of chimeric enzymes.
    Watanabe S; Yasutake Y; Tanaka I; Takada Y
    Microbiology (Reading); 2005 Apr; 151(Pt 4):1083-1094. PubMed ID: 15817777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two isocitrate dehydrogenases from a psychrophilic bacterium, Colwellia psychrerythraea.
    Maki S; Yoneta M; Takada Y
    Extremophiles; 2006 Jun; 10(3):237-49. PubMed ID: 16418792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of the substituted amino acid residues on the thermal properties of monomeric isocitrate dehydrogenases from a psychrophilic bacterium, Psychromonas marina, and a mesophilic bacterium, Azotobacter vinelandii.
    Tsubouchi K; Takada Y
    Extremophiles; 2019 Nov; 23(6):809-820. PubMed ID: 31595369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amino acid residues involved in cold adaptation of isocitrate lyase from a psychrophilic bacterium, Colwellia maris.
    Watanabe S; Takada Y
    Microbiology (Reading); 2004 Oct; 150(Pt 10):3393-403. PubMed ID: 15470117
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene cloning of cold-adapted isocitrate lyase from a psychrophilic bacterium, Colwellia psychrerythraea, and analysis of amino acid residues involved in cold adaptation of this enzyme.
    Sato Y; Watanabe S; Yamaoka N; Takada Y
    Extremophiles; 2008 Jan; 12(1):107-17. PubMed ID: 17965824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of chimeric isocitrate dehydrogenases of a mesophilic nitrogen-fixing bacterium, Azotobacter vinelandii, and a psychrophilic bacterium, Colwellia maris.
    Yoneta M; Sahara T; Nitta K; Takada Y
    Curr Microbiol; 2004 May; 48(5):383-8. PubMed ID: 15060737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isocitrate dehydrogenase isozymes from a psychrotrophic bacterium, Pseudomonas psychrophila.
    Matsuo S; Shirai H; Takada Y
    Arch Microbiol; 2010 Aug; 192(8):639-50. PubMed ID: 20549192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of NADP(+)-dependent isocitrate dehydrogenase isozymes from a psychrophilic bacterium, Colwellia psychrerythraea strain 34H.
    Suzuki K; Takada Y
    Biosci Biotechnol Biochem; 2016 Aug; 80(8):1492-8. PubMed ID: 27033696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of chimeric and mutated isocitrate lyases of a mesophilic nitrogen-fixing bacterium, Azotobacter vinelandii, and a psychrophilic bacterium, Colwellia maris.
    Hayashi T; Matsuzaki W; Takada Y
    Biosci Biotechnol Biochem; 2014; 78(2):195-201. PubMed ID: 25036671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purification and characterization of a cold-adapted isocitrate lyase and expression analysis of the cold-inducible isocitrate lyase gene from the psychrophilic bacterium Colwellia psychrerythraea.
    Watanabe S; Yamaoka N; Fukunaga N; Takada Y
    Extremophiles; 2002 Oct; 6(5):397-405. PubMed ID: 12382116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of phenylalanine hydroxylase from Colwellia psychrerythraea 34H, a monomeric cold active enzyme with local flexibility around the active site and high overall stability.
    Leiros HK; Pey AL; Innselset M; Moe E; Leiros I; Steen IH; Martinez A
    J Biol Chem; 2007 Jul; 282(30):21973-86. PubMed ID: 17537732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NADP
    Hirota R; Tsubouchi K; Takada Y
    Extremophiles; 2017 Jul; 21(4):711-721. PubMed ID: 28447265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cloning, Expression, and Characterization of a Cold-Adapted Shikimate Kinase from the Psychrophilic Bacterium
    Nugroho WS; Kim DW; Han JC; Hur YB; Nam SW; Kim HJ
    J Microbiol Biotechnol; 2016 Dec; 26(12):2087-2097. PubMed ID: 27666993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substitutions of coenzyme-binding, nonpolar residues improve the low-temperature activity of thermophilic dehydrogenases.
    Hayashi S; Akanuma S; Onuki W; Tokunaga C; Yamagishi A
    Biochemistry; 2011 Oct; 50(40):8583-93. PubMed ID: 21894900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gly or Ala substitutions for Pro(210)Thr(211)Asn(212) at the β8-β9 turn of subtilisin Carlsberg increase the catalytic rate and decrease thermostability.
    Fuchita N; Arita S; Ikuta J; Miura M; Shimomura K; Motoshima H; Watanabe K
    Biochim Biophys Acta; 2012 Apr; 1824(4):620-6. PubMed ID: 22326746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.