These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
243 related articles for article (PubMed ID: 24913919)
1. High-quality monolayer graphene synthesis on Pd foils via the suppression of multilayer growth at grain boundaries. Ma D; Liu M; Gao T; Li C; Sun J; Nie Y; Ji Q; Zhang Y; Song X; Zhang Y; Liu Z Small; 2014 Oct; 10(19):4003-11. PubMed ID: 24913919 [TBL] [Abstract][Full Text] [Related]
2. Growth of Single-Layer and Multilayer Graphene on Cu/Ni Alloy Substrates. Huang M; Ruoff RS Acc Chem Res; 2020 Apr; 53(4):800-811. PubMed ID: 32207601 [TBL] [Abstract][Full Text] [Related]
3. Designed CVD growth of graphene via process engineering. Yan K; Fu L; Peng H; Liu Z Acc Chem Res; 2013 Oct; 46(10):2263-74. PubMed ID: 23869401 [TBL] [Abstract][Full Text] [Related]
4. Ultrasmooth metallic foils for growth of high quality graphene by chemical vapor deposition. Procházka P; Mach J; Bischoff D; Lišková Z; Dvořák P; Vaňatka M; Simonet P; Varlet A; Hemzal D; Petrenec M; Kalina L; Bartošík M; Ensslin K; Varga P; Čechal J; Šikola T Nanotechnology; 2014 May; 25(18):185601. PubMed ID: 24739598 [TBL] [Abstract][Full Text] [Related]
5. Review of chemical vapor deposition of graphene and related applications. Zhang Y; Zhang L; Zhou C Acc Chem Res; 2013 Oct; 46(10):2329-39. PubMed ID: 23480816 [TBL] [Abstract][Full Text] [Related]
6. Chemical vapor deposition of graphene single crystals. Yan Z; Peng Z; Tour JM Acc Chem Res; 2014 Apr; 47(4):1327-37. PubMed ID: 24527957 [TBL] [Abstract][Full Text] [Related]
7. Growth and atomic-scale characterizations of graphene on multifaceted textured Pt foils prepared by chemical vapor deposition. Gao T; Xie S; Gao Y; Liu M; Chen Y; Zhang Y; Liu Z ACS Nano; 2011 Nov; 5(11):9194-201. PubMed ID: 22023251 [TBL] [Abstract][Full Text] [Related]
8. Highly uniform growth of monolayer graphene by chemical vapor deposition on Cu-Ag alloy catalysts. Shin HA; Ryu J; Cho SP; Lee EK; Cho S; Lee C; Joo YC; Hong BH Phys Chem Chem Phys; 2014 Feb; 16(7):3087-94. PubMed ID: 24399098 [TBL] [Abstract][Full Text] [Related]
9. Thinning segregated graphene layers on high carbon solubility substrates of rhodium foils by tuning the quenching process. Liu M; Zhang Y; Chen Y; Gao Y; Gao T; Ma D; Ji Q; Zhang Y; Li C; Liu Z ACS Nano; 2012 Dec; 6(12):10581-9. PubMed ID: 23157621 [TBL] [Abstract][Full Text] [Related]
10. Polycrystallinity and stacking in CVD graphene. Tsen AW; Brown L; Havener RW; Park J Acc Chem Res; 2013 Oct; 46(10):2286-96. PubMed ID: 23135386 [TBL] [Abstract][Full Text] [Related]
11. Defect-like structures of graphene on copper foils for strain relief investigated by high-resolution scanning tunneling microscopy. Zhang Y; Gao T; Gao Y; Xie S; Ji Q; Yan K; Peng H; Liu Z ACS Nano; 2011 May; 5(5):4014-22. PubMed ID: 21500831 [TBL] [Abstract][Full Text] [Related]
12. Significant enhancement of the electrical transport properties of graphene films by controlling the surface roughness of Cu foils before and during chemical vapor deposition. Lee D; Kwon GD; Kim JH; Moyen E; Lee YH; Baik S; Pribat D Nanoscale; 2014 Nov; 6(21):12943-51. PubMed ID: 25233143 [TBL] [Abstract][Full Text] [Related]
13. Atomic resolution of nitrogen-doped graphene on Cu foils. Wang C; Schouteden K; Wu QH; Li Z; Jiang J; Van Haesendonck C Nanotechnology; 2016 Sep; 27(36):365702. PubMed ID: 27479275 [TBL] [Abstract][Full Text] [Related]
14. Controllable synthesis of submillimeter single-crystal monolayer graphene domains on copper foils by suppressing nucleation. Wang H; Wang G; Bao P; Yang S; Zhu W; Xie X; Zhang WJ J Am Chem Soc; 2012 Feb; 134(8):3627-30. PubMed ID: 22324740 [TBL] [Abstract][Full Text] [Related]
15. Investigation of non-segregation graphene growth on Ni via isotope-labeled alcohol catalytic chemical vapor deposition. Zhao P; Hou B; Chen X; Kim S; Chiashi S; Einarsson E; Maruyama S Nanoscale; 2013 Jul; 5(14):6530-7. PubMed ID: 23760441 [TBL] [Abstract][Full Text] [Related]
16. Single and polycrystalline graphene on Rh(111) following different growth mechanisms. Liu M; Gao Y; Zhang Y; Zhang Y; Ma D; Ji Q; Gao T; Chen Y; Liu Z Small; 2013 Apr; 9(8):1360-6. PubMed ID: 23436758 [TBL] [Abstract][Full Text] [Related]
17. Synthesis and characterization of large-area graphene and graphite films on commercial Cu-Ni alloy foils. Chen S; Cai W; Piner RD; Suk JW; Wu Y; Ren Y; Kang J; Ruoff RS Nano Lett; 2011 Sep; 11(9):3519-25. PubMed ID: 21793495 [TBL] [Abstract][Full Text] [Related]
18. Periodic grain boundaries formed by thermal reconstruction of polycrystalline graphene film. Yang B; Xu H; Lu J; Loh KP J Am Chem Soc; 2014 Aug; 136(34):12041-6. PubMed ID: 25083942 [TBL] [Abstract][Full Text] [Related]
19. Highly Oriented Monolayer Graphene Grown on a Cu/Ni(111) Alloy Foil. Huang M; Biswal M; Park HJ; Jin S; Qu D; Hong S; Zhu Z; Qiu L; Luo D; Liu X; Yang Z; Liu Z; Huang Y; Lim H; Yoo WJ; Ding F; Wang Y; Lee Z; Ruoff RS ACS Nano; 2018 Jun; 12(6):6117-6127. PubMed ID: 29790339 [TBL] [Abstract][Full Text] [Related]
20. Rotated domains in chemical vapor deposition-grown monolayer graphene on Cu(111): an angle-resolved photoemission study. Jeon C; Hwang HN; Lee WG; Jung YG; Kim KS; Park CY; Hwang CC Nanoscale; 2013 Sep; 5(17):8210-4. PubMed ID: 23863869 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]