BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 24914245)

  • 1. Oxidative metabolic pathway of lenvatinib mediated by aldehyde oxidase.
    Inoue K; Mizuo H; Kawaguchi S; Fukuda K; Kusano K; Yoshimura T
    Drug Metab Dispos; 2014 Aug; 42(8):1326-33. PubMed ID: 24914245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unique metabolic pathway of [(14)C]lenvatinib after oral administration to male cynomolgus monkey.
    Inoue K; Asai N; Mizuo H; Fukuda K; Kusano K; Yoshimura T
    Drug Metab Dispos; 2012 Apr; 40(4):662-70. PubMed ID: 22207053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Species-specific metabolism of SGX523 by aldehyde oxidase and the toxicological implications.
    Diamond S; Boer J; Maduskuie TP; Falahatpisheh N; Li Y; Yeleswaram S
    Drug Metab Dispos; 2010 Aug; 38(8):1277-85. PubMed ID: 20421447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel ring oxidation of 4- or 5-substituted 2H-oxazole to corresponding 2-oxazolone catalyzed by cytosolic aldehyde oxidase.
    Arora VK; Philip T; Huang S; Shu YZ
    Drug Metab Dispos; 2012 Sep; 40(9):1668-76. PubMed ID: 22621803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Vitro Metabolism by Aldehyde Oxidase Leads to Poor Pharmacokinetic Profile in Rats for c-Met Inhibitor MET401.
    Zhang JW; Deng HB; Zhang CY; Dai JQ; Li Q; Zheng QG; Wan HX; Yu HP; He F; Xu YC; Zhao S; Zhang JYJ
    Eur J Drug Metab Pharmacokinet; 2019 Oct; 44(5):669-680. PubMed ID: 31030415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Species differences in enantioselective 2-oxidations of RS-8359, a selective and reversible MAO-A inhibitor, and cinchona alkaloids by aldehyde oxidase.
    Itoh K; Yamamura M; Takasaki W; Sasaki T; Masubuchi A; Tanaka Y
    Biopharm Drug Dispos; 2006 Apr; 27(3):133-9. PubMed ID: 16400710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The impact of individual human cytochrome P450 enzymes on oxidative metabolism of anticancer drug lenvatinib.
    Vavrová K; Indra R; Pompach P; Heger Z; Hodek P
    Biomed Pharmacother; 2022 Jan; 145():112391. PubMed ID: 34847475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Species-Specific Involvement of Aldehyde Oxidase and Xanthine Oxidase in the Metabolism of the Pyrimidine-Containing mGlu
    Crouch RD; Blobaum AL; Felts AS; Conn PJ; Lindsley CW
    Drug Metab Dispos; 2017 Dec; 45(12):1245-1259. PubMed ID: 28939686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of aldehyde oxidase and xanthine oxidase in the biotransformation of a novel negative allosteric modulator of metabotropic glutamate receptor subtype 5.
    Morrison RD; Blobaum AL; Byers FW; Santomango TS; Bridges TM; Stec D; Brewer KA; Sanchez-Ponce R; Corlew MM; Rush R; Felts AS; Manka J; Bates BS; Venable DF; Rodriguez AL; Jones CK; Niswender CM; Conn PJ; Lindsley CW; Emmitte KA; Daniels JS
    Drug Metab Dispos; 2012 Sep; 40(9):1834-45. PubMed ID: 22711749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolism of c-Met Kinase Inhibitors Containing Quinoline by Aldehyde Oxidase, Electron Donating, and Steric Hindrance Effect.
    Zhang JW; Xiao W; Gao ZT; Yu ZT; Zhang JYJ
    Drug Metab Dispos; 2018 Dec; 46(12):1847-1855. PubMed ID: 30209037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aldehyde oxidase-dependent marked species difference in hepatic metabolism of the sedative-hypnotic, zaleplon, between monkeys and rats.
    Kawashima K; Hosoi K; Naruke T; Shiba T; Kitamura M; Watabe T
    Drug Metab Dispos; 1999 Mar; 27(3):422-8. PubMed ID: 10064576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolite profiling of the multiple tyrosine kinase inhibitor lenvatinib: a cross-species comparison.
    Dubbelman AC; Nijenhuis CM; Jansen RS; Rosing H; Mizuo H; Kawaguchi S; Critchley D; Shumaker R; Schellens JH; Beijnen JH
    Invest New Drugs; 2016 Jun; 34(3):300-18. PubMed ID: 27018262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zebularine metabolism by aldehyde oxidase in hepatic cytosol from humans, monkeys, dogs, rats, and mice: influence of sex and inhibitors.
    Klecker RW; Cysyk RL; Collins JM
    Bioorg Med Chem; 2006 Jan; 14(1):62-6. PubMed ID: 16143537
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolism of dictamnine in liver microsomes from mouse, rat, dog, monkey, and human.
    Wang P; Zhao Y; Zhu Y; Sun J; Yerke A; Sang S; Yu Z
    J Pharm Biomed Anal; 2016 Feb; 119():166-74. PubMed ID: 26683990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Case report of extensive metabolism by aldehyde oxidase in humans: pharmacokinetics and metabolite profile of FK3453 in rats, dogs, and humans.
    Akabane T; Tanaka K; Irie M; Terashita S; Teramura T
    Xenobiotica; 2011 May; 41(5):372-84. PubMed ID: 21385103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro biotransformation and investigation of metabolic enzymes possibly responsible for the metabolism of bisdesoxyolaquindox in the liver fractions of rats, chicken, and pigs.
    Liu ZY; Chen DM; Huang LL; Tao YF; Yao M; Yuan ZH
    Toxicology; 2011 Jan; 279(1-3):155-66. PubMed ID: 20955753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pharmacokinetics of the novel, high-affinity and selective dopamine D3 receptor antagonist SB-277011 in rat, dog and monkey: in vitro/in vivo correlation and the role of aldehyde oxidase.
    Austin NE; Baldwin SJ; Cutler L; Deeks N; Kelly PJ; Nash M; Shardlow CE; Stemp G; Thewlis K; Ayrton A; Jeffrey P
    Xenobiotica; 2001; 31(8-9):677-86. PubMed ID: 11569533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro hepatic metabolism of cediranib, a potent vascular endothelial growth factor tyrosine kinase inhibitor: interspecies comparison and human enzymology.
    Schulz-Utermoehl T; Spear M; Pollard CR; Pattison C; Rollison H; Sarda S; Ward M; Bushby N; Jordan A; Harrison M
    Drug Metab Dispos; 2010 Oct; 38(10):1688-97. PubMed ID: 20634336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The in vitro hepatic metabolism of ABT-418, a cholinergic channel activator, in rats, dogs, cynomolgus monkeys, and humans.
    Rodrigues AD; Ferrero JL; Amann MT; Rotert GA; Cepa SP; Surber BW; Machinist JM; Tich NR; Sullivan JP; Garvey DS
    Drug Metab Dispos; 1994; 22(5):788-98. PubMed ID: 7530622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolism of cryptolepine and 2-fluorocryptolepine by aldehyde oxidase.
    Stell JG; Wheelhouse RT; Wright CW
    J Pharm Pharmacol; 2012 Feb; 64(2):237-43. PubMed ID: 22221099
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.