These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 24914448)

  • 1. Structure of arginine overlayers at the aqueous gold interface: implications for nanoparticle assembly.
    Wright LB; Merrill NA; Knecht MR; Walsh TR
    ACS Appl Mater Interfaces; 2014 Jul; 6(13):10524-33. PubMed ID: 24914448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and properties of citrate overlayers adsorbed at the aqueous Au(111) interface.
    Wright LB; Rodger PM; Walsh TR
    Langmuir; 2014 Dec; 30(50):15171-80. PubMed ID: 25454252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of arginine on gold nanoparticles in colloidal solutions and in thin films.
    Tomoaia G; Frangopol PT; Horovitz O; Boboş LD; Mocanu A; Tomoaia-Cotisel M
    J Nanosci Nanotechnol; 2011 Sep; 11(9):7762-70. PubMed ID: 22097484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Homocysteine-mediated reactivity and assembly of gold nanoparticles.
    Lim II; Ip W; Crew E; Njoki PN; Mott D; Zhong CJ; Pan Y; Zhou S
    Langmuir; 2007 Jan; 23(2):826-33. PubMed ID: 17209640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ligand exchange effects in gold nanoparticle assembly induced by oxidative stress biomarkers: homocysteine and cysteine.
    Stobiecka M; Deeb J; Hepel M
    Biophys Chem; 2010 Feb; 146(2-3):98-107. PubMed ID: 19944518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adsorption of cyanine dyes on gold nanoparticles and formation of J-aggregates in the nanoparticle assembly.
    Lim II; Goroleski F; Mott D; Kariuki N; Ip W; Luo J; Zhong CJ
    J Phys Chem B; 2006 Apr; 110(13):6673-82. PubMed ID: 16570972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interparticle interactions in glutathione mediated assembly of gold nanoparticles.
    Lim II; Mott D; Ip W; Njoki PN; Pan Y; Zhou S; Zhong CJ
    Langmuir; 2008 Aug; 24(16):8857-63. PubMed ID: 18642936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recognition of lysine, arginine and histidine by novel p-sulfonatocalix[4]arene thiol functionalized gold nanoparticles in aqueous solution.
    Patel G; Menon S
    Chem Commun (Camb); 2009 Jun; (24):3563-5. PubMed ID: 19521608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding the mechanism of amino acid-based Au nanoparticle chain formation.
    Sethi M; Knecht MR
    Langmuir; 2010 Jun; 26(12):9860-74. PubMed ID: 20392122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visual detection of arginine based on the unique guanidino group-induced aggregation of gold nanoparticles.
    Pu W; Zhao H; Huang C; Wu L; Xu D
    Anal Chim Acta; 2013 Feb; 764():78-83. PubMed ID: 23374218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assembly Dynamics of Plasmonic DNA-Capped Gold Nanoparticle Monolayers.
    Derrien TL; Zhang M; Dorion PO; Smilgies DM; Luo D
    Langmuir; 2018 Dec; 34(49):14711-14720. PubMed ID: 29782172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Different interaction modes of biomolecules with citrate-capped gold nanoparticles.
    Zhang S; Moustafa Y; Huo Q
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):21184-92. PubMed ID: 25347206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of metal-liquid interface composition on the adsorption of a cyanine dye onto gold nanoparticles.
    Guerrini L; Jurasekova Z; del Puerto E; Hartsuiker L; Domingo C; Garcia-Ramos JV; Otto C; Sanchez-Cortes S
    Langmuir; 2013 Jan; 29(4):1139-47. PubMed ID: 23281711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stable aqueous nanoparticle film assemblies with covalent and charged polymer linking networks.
    Russell LE; Galyean AA; Notte SM; Leopold MC
    Langmuir; 2007 Jul; 23(14):7466-71. PubMed ID: 17559246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface chemistry of thiomalic acid adsorption on planar gold and gold nanoparticles.
    Azcárate JC; Addato MA; Rubert A; Corthey G; Moreno GS; Benítez G; Zelaya E; Salvarezza RC; Fonticelli MH
    Langmuir; 2014 Feb; 30(7):1820-6. PubMed ID: 24479895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extinction coefficient of gold nanoparticles with different sizes and different capping ligands.
    Liu X; Atwater M; Wang J; Huo Q
    Colloids Surf B Biointerfaces; 2007 Jul; 58(1):3-7. PubMed ID: 16997536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA-directed self-assembly of gold nanoparticles onto nanopatterned surfaces: controlled placement of individual nanoparticles into regular arrays.
    Lalander CH; Zheng Y; Dhuey S; Cabrini S; Bach U
    ACS Nano; 2010 Oct; 4(10):6153-61. PubMed ID: 20932055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface plasmon resonance of gold nanoparticles assemblies at liquid | liquid interfaces.
    Hojeij M; Younan N; Ribeaucourt L; Girault HH
    Nanoscale; 2010 Sep; 2(9):1665-9. PubMed ID: 20820697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of electrolyte induced aggregation of gold nanoparticles capped by amino acids.
    Aryal S; Remant BK; Narayan B; Kim CK; Kim HY
    J Colloid Interface Sci; 2006 Jul; 299(1):191-7. PubMed ID: 16499918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel synthetic route to peptide-capped gold nanoparticles.
    Serizawa T; Hirai Y; Aizawa M
    Langmuir; 2009 Oct; 25(20):12229-34. PubMed ID: 19769351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.