These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 24914617)

  • 21. Rapid fabrication of a dual-scale micro-nanostructured superhydrophobic aluminum surface with delayed condensation and ice formation properties.
    Barthwal S; Lim SH
    Soft Matter; 2019 Oct; 15(39):7945-7955. PubMed ID: 31544192
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Are superhydrophobic surfaces best for icephobicity?
    Jung S; Dorrestijn M; Raps D; Das A; Megaridis CM; Poulikakos D
    Langmuir; 2011 Mar; 27(6):3059-66. PubMed ID: 21319778
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Anti-icing superhydrophobic coatings.
    Cao L; Jones AK; Sikka VK; Wu J; Gao D
    Langmuir; 2009 Nov; 25(21):12444-8. PubMed ID: 19799464
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Condensation and freezing of droplets on superhydrophobic surfaces.
    Oberli L; Caruso D; Hall C; Fabretto M; Murphy PJ; Evans D
    Adv Colloid Interface Sci; 2014 Aug; 210():47-57. PubMed ID: 24200089
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inhibition of ice nucleation by slippery liquid-infused porous surfaces (SLIPS).
    Wilson PW; Lu W; Xu H; Kim P; Kreder MJ; Alvarenga J; Aizenberg J
    Phys Chem Chem Phys; 2013 Jan; 15(2):581-5. PubMed ID: 23183624
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Osteoclast resorption of thermal spray hydoxyapatite coatings is influenced by surface topography.
    Gross KA; Muller D; Lucas H; Haynes DR
    Acta Biomater; 2012 May; 8(5):1948-56. PubMed ID: 22307028
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nano-micro structured superhydrophobic zinc coating on steel for prevention of corrosion and ice adhesion.
    Brassard JD; Sarkar DK; Perron J; Audibert-Hayet A; Melot D
    J Colloid Interface Sci; 2015 Jun; 447():240-7. PubMed ID: 25529334
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dynamics of ice nucleation on water repellent surfaces.
    Alizadeh A; Yamada M; Li R; Shang W; Otta S; Zhong S; Ge L; Dhinojwala A; Conway KR; Bahadur V; Vinciquerra AJ; Stephens B; Blohm ML
    Langmuir; 2012 Feb; 28(6):3180-6. PubMed ID: 22235939
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Passive Anti-Icing Performances of the Same Superhydrophobic Surfaces under Static Freezing, Dynamic Supercooled-Droplet Impinging, and Icing Wind Tunnel Tests.
    Tian Z; Wang L; Zhu D; Chen C; Zhao H; Peng R; Zhang H; Fan P; Zhong M
    ACS Appl Mater Interfaces; 2023 Feb; 15(4):6013-6024. PubMed ID: 36656131
    [TBL] [Abstract][Full Text] [Related]  

  • 30. New insight into icing and de-icing properties of hydrophobic and hydrophilic structured surfaces based on core-shell particles.
    Chanda J; Ionov L; Kirillova A; Synytska A
    Soft Matter; 2015 Dec; 11(47):9126-34. PubMed ID: 26411650
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Low Ice Adhesion on Nano-Textured Superhydrophobic Surfaces under Supersaturated Conditions.
    Bengaluru Subramanyam S; Kondrashov V; Rühe J; Varanasi KK
    ACS Appl Mater Interfaces; 2016 May; 8(20):12583-7. PubMed ID: 27150450
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Designing robust alumina nanowires-on-nanopores structures: superhydrophobic surfaces with slippery or sticky water adhesion.
    Peng S; Tian D; Miao X; Yang X; Deng W
    J Colloid Interface Sci; 2013 Nov; 409():18-24. PubMed ID: 23981676
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of Water Solidification Concepts in Designing Nano-Textured Anti-Icing Surfaces.
    Gohari B; Russell K; Hejazi V; Rohatgi P
    J Phys Chem B; 2017 Aug; 121(32):7527-7535. PubMed ID: 28658573
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The influence of nano-scale surface roughness on bacterial adhesion to ultrafine-grained titanium.
    Truong VK; Lapovok R; Estrin YS; Rundell S; Wang JY; Fluke CJ; Crawford RJ; Ivanova EP
    Biomaterials; 2010 May; 31(13):3674-83. PubMed ID: 20163851
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Passive Anti-Icing and Active Deicing Films.
    Wang T; Zheng Y; Raji AR; Li Y; Sikkema WK; Tour JM
    ACS Appl Mater Interfaces; 2016 Jun; 8(22):14169-73. PubMed ID: 27192099
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Design of anti-icing coatings using supercooled droplets as nano-to-microscale probes.
    Xiao J; Chaudhuri S
    Langmuir; 2012 Mar; 28(9):4434-46. PubMed ID: 22352955
    [TBL] [Abstract][Full Text] [Related]  

  • 37. How wetting hysteresis influences ice adhesion strength on superhydrophobic surfaces.
    Kulinich SA; Farzaneh M
    Langmuir; 2009 Aug; 25(16):8854-6. PubMed ID: 19719211
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Initial colloid deposition on bare and zeolite-coated stainless steel and aluminum: influence of surface roughness.
    Chen G; Bedi RS; Yan YS; Walker SL
    Langmuir; 2010 Aug; 26(15):12605-13. PubMed ID: 20590135
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Facile Adhesion-Tuning of Superhydrophobic Surfaces between "Lotus" and "Petal" Effect and Their Influence on Icing and Deicing Properties.
    Nine MJ; Tung TT; Alotaibi F; Tran DN; Losic D
    ACS Appl Mater Interfaces; 2017 Mar; 9(9):8393-8402. PubMed ID: 28192650
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ice-phobic coatings based on silicon-oil-infused polydimethylsiloxane.
    Zhu L; Xue J; Wang Y; Chen Q; Ding J; Wang Q
    ACS Appl Mater Interfaces; 2013 May; 5(10):4053-62. PubMed ID: 23642087
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.