These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

507 related articles for article (PubMed ID: 24914703)

  • 1. Using in-situ polymerization of conductive polymers to enhance the electrical properties of solution-processed carbon nanotube films and fibers.
    Allen R; Pan L; Fuller GG; Bao Z
    ACS Appl Mater Interfaces; 2014 Jul; 6(13):9966-74. PubMed ID: 24914703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clothing polymer fibers with well-aligned and high-aspect ratio carbon nanotubes.
    Sun G; Zheng L; An J; Pan Y; Zhou J; Zhan Z; Pang JH; Chua CK; Leong KF; Li L
    Nanoscale; 2013 Apr; 5(7):2870-4. PubMed ID: 23446516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved conductivity of carbon nanotube networks by in situ polymerization of a thin skin of conducting polymer.
    Ma Y; Cheung W; Wei D; Bogozi A; Chiu PL; Wang L; Pontoriero F; Mendelsohn R; He H
    ACS Nano; 2008 Jun; 2(6):1197-204. PubMed ID: 19206337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The electronic role of DNA-functionalized carbon nanotubes: efficacy for in situ polymerization of conducting polymer nanocomposites.
    Ma Y; Chiu PL; Serrano A; Ali SR; Chen AM; He H
    J Am Chem Soc; 2008 Jun; 130(25):7921-8. PubMed ID: 18517209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recyclable and electrically conducting carbon nanotube composite films.
    Zou G; Jain M; Yang H; Zhang Y; Williams D; Jia Q
    Nanoscale; 2010 Mar; 2(3):418-22. PubMed ID: 20644826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microcontact printing for patterning carbon nanotube/polymer composite films with electrical conductivity.
    Ogihara H; Kibayashi H; Saji T
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4891-7. PubMed ID: 22900673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solubilization of Carbon Nanotubes with Ethylene-Vinyl Acetate for Solution-Processed Conductive Films and Charge Extraction Layers in Perovskite Solar Cells.
    Mazzotta G; Dollmann M; Habisreutinger SN; Christoforo MG; Wang Z; Snaith HJ; Riede MK; Nicholas RJ
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):1185-1191. PubMed ID: 30556995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of conductive polymer nanofibers through SWNT supramolecular functionalization and aqueous solution processing.
    Naeem F; Prestayko R; Saem S; Nowicki L; Imit M; Adronov A; Moran-Mirabal JM
    Nanotechnology; 2015 Oct; 26(39):395301. PubMed ID: 26351867
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Performance Carbon Nanotube/Polymer Composite Fiber from Layer-by-Layer Deposition.
    Wu ML; Chen Y; Zhang L; Zhan H; Qiang L; Wang JN
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):8137-44. PubMed ID: 26959406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A review of fabrication and applications of carbon nanotube film-based flexible electronics.
    Park S; Vosguerichian M; Bao Z
    Nanoscale; 2013 Mar; 5(5):1727-52. PubMed ID: 23381727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effective reinforcement of electrical conductivity and strength of carbon nanotube fibers by silver-paste-liquid infiltration processing.
    Zhong XH; Wang R; Wen YY
    Phys Chem Chem Phys; 2013 Mar; 15(11):3861-5. PubMed ID: 23399977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anisotropic conductive films based on highly aligned polyimide fibers containing hybrid materials of graphene nanoribbons and carbon nanotubes.
    Liu M; Du Y; Miao YE; Ding Q; He S; Tjiu WW; Pan J; Liu T
    Nanoscale; 2015 Jan; 7(3):1037-46. PubMed ID: 25474256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The alignment of carbon nanotubes: an effective route to extend their excellent properties to macroscopic scale.
    Sun X; Chen T; Yang Z; Peng H
    Acc Chem Res; 2013 Feb; 46(2):539-49. PubMed ID: 23170988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous electrodeposition for lightweight, highly conducting and strong carbon nanotube-copper composite fibers.
    Xu G; Zhao J; Li S; Zhang X; Yong Z; Li Q
    Nanoscale; 2011 Oct; 3(10):4215-9. PubMed ID: 21879118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transparent, flexible, and highly conductive thin films based on polymer-nanotube composites.
    De S; Lyons PE; Sorel S; Doherty EM; King PJ; Blau WJ; Nirmalraj PN; Boland JJ; Scardaci V; Joimel J; Coleman JN
    ACS Nano; 2009 Mar; 3(3):714-20. PubMed ID: 19227998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High volume fraction carbon nanotube-epoxy composites.
    Spitalsky Z; Tsoukleri G; Tasis D; Krontiras C; Georga SN; Galiotis C
    Nanotechnology; 2009 Oct; 20(40):405702. PubMed ID: 19738313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polymer/carbon nanotube nano composite fibers--a review.
    Liu Y; Kumar S
    ACS Appl Mater Interfaces; 2014 May; 6(9):6069-87. PubMed ID: 24520802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of Electrically Conductive Structural Composites by Modulating Aligned CVD-Grown Carbon Nanotube Length on Glass Fibers.
    He D; Fan B; Zhao H; Lu X; Yang M; Liu Y; Bai J
    ACS Appl Mater Interfaces; 2017 Jan; 9(3):2948-2958. PubMed ID: 28056505
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of SOCl2 doping effect on electrical conductivity of thin films of SWNTs and SWNT/PEDOT-PSS composites.
    Najeeb CK; Lee JH; Chang J; Kim JH
    J Nanosci Nanotechnol; 2011 Jul; 11(7):5839-44. PubMed ID: 22121617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functionalized few-walled carbon nanotubes for mechanical reinforcement of polymeric composites.
    Hou Y; Tang J; Zhang H; Qian C; Feng Y; Liu J
    ACS Nano; 2009 May; 3(5):1057-62. PubMed ID: 19397293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.