BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 24915041)

  • 1. Monitoring protein misfolding by site-specific labeling of proteins in vivo.
    Hsieh TY; Nillegoda NB; Tyedmers J; Bukau B; Mogk A; Kramer G
    PLoS One; 2014; 9(6):e99395. PubMed ID: 24915041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A genetically encoded fluorescent probe in mammalian cells.
    Chatterjee A; Guo J; Lee HS; Schultz PG
    J Am Chem Soc; 2013 Aug; 135(34):12540-3. PubMed ID: 23924161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic incorporation of a small, environmentally sensitive, fluorescent probe into proteins in Saccharomyces cerevisiae.
    Lee HS; Guo J; Lemke EA; Dimla RD; Schultz PG
    J Am Chem Soc; 2009 Sep; 131(36):12921-3. PubMed ID: 19702307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Simplified Protocol to Incorporate the Fluorescent Unnatural Amino Acid ANAP into Xenopus laevis Oocyte-Expressed P2X7 Receptors.
    Durner A; Nicke A
    Methods Mol Biol; 2022; 2510():193-216. PubMed ID: 35776326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupled assays for monitoring protein refolding in Saccharomyces cerevisiae.
    Abrams JL; Morano KA
    J Vis Exp; 2013 Jul; (77):e50432. PubMed ID: 23892247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hsp31 Is a Stress Response Chaperone That Intervenes in the Protein Misfolding Process.
    Tsai CJ; Aslam K; Drendel HM; Asiago JM; Goode KM; Paul LN; Rochet JC; Hazbun TR
    J Biol Chem; 2015 Oct; 290(41):24816-34. PubMed ID: 26306045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overexpression of yeast Hsp110 homolog Sse1p suppresses ydj1-151 thermosensitivity and restores Hsp90-dependent activity.
    Goeckeler JL; Stephens A; Lee P; Caplan AJ; Brodsky JL
    Mol Biol Cell; 2002 Aug; 13(8):2760-70. PubMed ID: 12181344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two distinct mechanisms operate in the reactivation of heat-denatured proteins by the mitochondrial Hsp70/Mdj1p/Yge1p chaperone system.
    Kubo Y; Tsunehiro T; Nishikawa S; Nakai M; Ikeda E; Toh-e A; Morishima N; Shibata T; Endo T
    J Mol Biol; 1999 Feb; 286(2):447-64. PubMed ID: 9973563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective Hsp70-Dependent Docking of Hsp104 to Protein Aggregates Protects the Cell from the Toxicity of the Disaggregase.
    Chamera T; Kłosowska A; Janta A; Wyszkowski H; Obuchowski I; Gumowski K; Liberek K
    J Mol Biol; 2019 May; 431(11):2180-2196. PubMed ID: 31026451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fibrinogen has chaperone-like activity.
    Tang H; Fu Y; Cui Y; He Y; Zeng X; Ploplis VA; Castellino FJ; Luo Y
    Biochem Biophys Res Commun; 2009 Jan; 378(3):662-7. PubMed ID: 19059206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for an unfolding/threading mechanism for protein disaggregation by Saccharomyces cerevisiae Hsp104.
    Lum R; Tkach JM; Vierling E; Glover JR
    J Biol Chem; 2004 Jul; 279(28):29139-46. PubMed ID: 15128736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arsenite interferes with protein folding and triggers formation of protein aggregates in yeast.
    Jacobson T; Navarrete C; Sharma SK; Sideri TC; Ibstedt S; Priya S; Grant CM; Christen P; Goloubinoff P; Tamás MJ
    J Cell Sci; 2012 Nov; 125(Pt 21):5073-83. PubMed ID: 22946053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new perspective on Hsp104-mediated propagation and curing of the yeast prion [PSI (+) ].
    Helsen CW; Glover JR
    Prion; 2012 Jul; 6(3):234-9. PubMed ID: 22561166
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hsp42 is required for sequestration of protein aggregates into deposition sites in Saccharomyces cerevisiae.
    Specht S; Miller SB; Mogk A; Bukau B
    J Cell Biol; 2011 Nov; 195(4):617-29. PubMed ID: 22065637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The domain-specific and temperature-dependent protein misfolding phenotype of variant medium-chain acyl-CoA dehydrogenase.
    Jank JM; Maier EM; Reiβ DD; Haslbeck M; Kemter KF; Truger MS; Sommerhoff CP; Ferdinandusse S; Wanders RJ; Gersting SW; Muntau AC
    PLoS One; 2014; 9(4):e93852. PubMed ID: 24718418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing the different chaperone activities of the bacterial HSP70-HSP40 system using a thermolabile luciferase substrate.
    Sharma SK; De Los Rios P; Goloubinoff P
    Proteins; 2011 Jun; 79(6):1991-8. PubMed ID: 21488102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The interaction of Hsp104 with yeast prion Sup35 as analyzed by fluorescence cross-correlation spectroscopy.
    Ohta S; Kawai-Noma S; Kitamura A; Pack CG; Kinjo M; Taguchi H
    Biochem Biophys Res Commun; 2013 Dec; 442(1-2):28-32. PubMed ID: 24216111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of aggregate load and pattern in living yeast cells by flow cytometry.
    Hidalgo IH; Fleming T; Eckstein V; Herzig S; Nawroth PP; Tyedmers J
    Biotechniques; 2016; 61(3):137-48. PubMed ID: 27625208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Site-specific insertion of spin-labeled L-amino acids in Xenopus oocytes.
    Shafer AM; Kálai T; Bin Liu SQ; Hideg K; Voss JC
    Biochemistry; 2004 Jul; 43(26):8470-82. PubMed ID: 15222758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-based mutagenesis studies of the peptide substrate binding fragment of type I heat-shock protein 40.
    Li J; Sha B
    Biochem J; 2005 Mar; 386(Pt 3):453-60. PubMed ID: 15500443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.