These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 24915179)

  • 1. An adaptive 6-DOF tracking method by hybrid sensing for ultrasonic endoscopes.
    Du C; Chen X; Wang Y; Li J; Yu D
    Sensors (Basel); 2014 Jun; 14(6):9961-83. PubMed ID: 24915179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of IMU and MARG orientation using a gradient descent algorithm.
    Madgwick SO; Harrison AJ; Vaidyanathan A
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975346. PubMed ID: 22275550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An adaptive-gain complementary filter for real-time human motion tracking with MARG sensors in free-living environments.
    Tian Y; Wei H; Tan J
    IEEE Trans Neural Syst Rehabil Eng; 2013 Mar; 21(2):254-64. PubMed ID: 22801527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Image partitioning and illumination in image-based pose detection for teleoperated flexible endoscopes.
    Bell CS; Obstein KL; Valdastri P
    Artif Intell Med; 2013 Nov; 59(3):185-96. PubMed ID: 24188575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A localization method using 3-axis magnetoresistive sensors for tracking of capsule endoscope.
    Wang X; Meng MQ; Hu C
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2522-5. PubMed ID: 17946518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A New Quaternion-Based Kalman Filter for Human Body Motion Tracking Using the Second Estimator of the Optimal Quaternion Algorithm and the Joint Angle Constraint Method with Inertial and Magnetic Sensors.
    Duan Y; Zhang X; Li Z
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33113983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quaternion-based extended Kalman filter for determining orientation by inertial and magnetic sensing.
    Sabatini AM
    IEEE Trans Biomed Eng; 2006 Jul; 53(7):1346-56. PubMed ID: 16830938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ambulatory position and orientation tracking fusing magnetic and inertial sensing.
    Roetenberg D; Slycke PJ; Veltink PH
    IEEE Trans Biomed Eng; 2007 May; 54(5):883-90. PubMed ID: 17518285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A localization method for wireless capsule endoscopy using side wall cameras and IMU sensor.
    Vedaei SS; Wahid KA
    Sci Rep; 2021 May; 11(1):11204. PubMed ID: 34045554
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Benchmarking Dataset of Signals from a Commercial MEMS Magnetic-Angular Rate-Gravity (MARG) Sensor Manipulated in Regions with and without Geomagnetic Distortion.
    Sonchan P; Ratchatanantakit N; O-Larnnithipong N; Adjouadi M; Barreto A
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Implementation, calibration and accuracy testing of an image-enhanced endoscopy system.
    Shahidi R; Bax MR; Maurer CR; Johnson JA; Wilkinson EP; Wang B; West JB; Citardi MJ; Manwaring KH; Khadem R
    IEEE Trans Med Imaging; 2002 Dec; 21(12):1524-35. PubMed ID: 12588036
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An improved magnetic localization and orientation algorithm for wireless capsule endoscope.
    Hu C; Yang W; Chen D; Meng MQ; Dai H
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2055-8. PubMed ID: 19163099
    [TBL] [Abstract][Full Text] [Related]  

  • 13. C-arm angle measurement with accelerometer for brachytherapy: an accuracy study.
    Wolff T; Lasso A; Eblenkamp M; Wintermantel E; Fichtinger G
    Int J Comput Assist Radiol Surg; 2014 Jan; 9(1):137-44. PubMed ID: 23820762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SteadEye-Head-Improving MARG-Sensor Based Head Orientation Measurements Through Eye Tracking Data.
    Wöhle L; Gebhard M
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32408630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inertial navigation system for bladder endoscopy.
    Behrens A; Grimm J; Gross S; Aach T
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5376-9. PubMed ID: 22255553
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel non-model-based 6-DOF electromagnetic tracking method using non-iterative algorithm.
    Ge X; Lai D; Wu X; Fang Z
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5114-7. PubMed ID: 19963884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compensation of magnetic disturbances improves inertial and magnetic sensing of human body segment orientation.
    Roetenberg D; Luinge HJ; Baten CT; Veltink PH
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):395-405. PubMed ID: 16200762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial orientation in translumenal surgery.
    Höller K; Schneider A; Jahn J; Gutiérrez J; Wittenberg T; Feussner H; Hornegger J
    Minim Invasive Ther Allied Technol; 2010 Oct; 19(5):262-73. PubMed ID: 20868299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ambulatory human motion tracking by fusion of inertial and magnetic sensing with adaptive actuation.
    Schepers HM; Roetenberg D; Veltink PH
    Med Biol Eng Comput; 2010 Jan; 48(1):27-37. PubMed ID: 20016949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimating Three-Dimensional Body Orientation Based on an Improved Complementary Filter for Human Motion Tracking.
    Yi C; Ma J; Guo H; Han J; Gao H; Jiang F; Yang C
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30400359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.