These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 24915295)

  • 1. Brain networks underlying navigation in the Cincinnati water maze with external and internal cues.
    Arias N; Méndez M; Arias JL
    Neurosci Lett; 2014 Jul; 576():68-72. PubMed ID: 24915295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finding the place without the whole: Timeline involvement of brain regions.
    Arias N; Méndez M; Vallejo G; Arias JL
    Brain Res; 2015 Nov; 1625():18-28. PubMed ID: 26319692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of lighting conditions on brain network complexity associated with response learning.
    Fidalgo C; Conejo NM; González-Pardo H; Arias JL
    Neurosci Lett; 2013 Oct; 555():182-6. PubMed ID: 24084195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of environmental enrichment on anxiety responses, spatial memory and cytochrome c oxidase activity in adult rats.
    Sampedro-Piquero P; Zancada-Menendez C; Begega A; Rubio S; Arias JL
    Brain Res Bull; 2013 Sep; 98():1-9. PubMed ID: 23831916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic functional brain networks involved in simple visual discrimination learning.
    Fidalgo C; Conejo NM; González-Pardo H; Arias JL
    Neurobiol Learn Mem; 2014 Oct; 114():165-70. PubMed ID: 24937013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional interactions between dentate gyrus, striatum and anterior thalamic nuclei on spatial memory retrieval.
    Méndez-Couz M; Conejo NM; González-Pardo H; Arias JL
    Brain Res; 2015 Apr; 1605():59-69. PubMed ID: 25680583
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain network function during shifts in learning strategies in portal hypertension animals.
    Arias N; Fidalgo C; Vallejo G; Arias JL
    Brain Res Bull; 2014 May; 104():52-9. PubMed ID: 24742527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cincinnati water maze: A review of the development, methods, and evidence as a test of egocentric learning and memory.
    Vorhees CV; Williams MT
    Neurotoxicol Teratol; 2016; 57():1-19. PubMed ID: 27545092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How demanding is the brain on a reversal task under day and night conditions?
    Arias N; Fidalgo C; Méndez M; Arias JL
    Neurosci Lett; 2015 Jul; 600():153-7. PubMed ID: 26071902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Similarities and differences between the brain networks underlying allocentric and egocentric spatial learning in rat revealed by cytochrome oxidase histochemistry.
    Rubio S; Begega A; Méndez M; Méndez-López M; Arias JL
    Neuroscience; 2012 Oct; 223():174-82. PubMed ID: 22871518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial learning of the water maze: progression of brain circuits mapped with cytochrome oxidase histochemistry.
    Conejo NM; González-Pardo H; Gonzalez-Lima F; Arias JL
    Neurobiol Learn Mem; 2010 Mar; 93(3):362-71. PubMed ID: 19969098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calibrating space: exploration is important for allothetic and idiothetic navigation.
    Whishaw IQ; Brooks BL
    Hippocampus; 1999; 9(6):659-67. PubMed ID: 10641759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Value of water mazes for assessing spatial and egocentric learning and memory in rodent basic research and regulatory studies.
    Vorhees CV; Williams MT
    Neurotoxicol Teratol; 2014; 45():75-90. PubMed ID: 25116937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial memory extinction: a c-Fos protein mapping study.
    Méndez-Couz M; Conejo NM; Vallejo G; Arias JL
    Behav Brain Res; 2014 Mar; 260():101-10. PubMed ID: 24315832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Granular and dysgranular retrosplenial cortices provide qualitatively different contributions to spatial working memory: evidence from immediate-early gene imaging in rats.
    Pothuizen HH; Davies M; Albasser MM; Aggleton JP; Vann SD
    Eur J Neurosci; 2009 Sep; 30(5):877-88. PubMed ID: 19712100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Processing idiothetic cues to remember visited locations: hippocampal and vestibular contributions to radial-arm maze performance.
    Allen K; Potvin O; Thibaudeau G; Doré FY; Goulet S
    Hippocampus; 2007; 17(8):642-53. PubMed ID: 17554772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Requiring collaboration: Hippocampal-prefrontal networks needed in spatial working memory and ageing. A multivariate analysis approach.
    Zancada-Menendez C; Alvarez-Suarez P; Sampedro-Piquero P; Cuesta M; Begega A
    Neurobiol Learn Mem; 2017 Apr; 140():33-42. PubMed ID: 28213065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of neonatal dentate gyrus lesion on allothetic and idiothetic navigation in rats.
    Czéh B; Stuchlik A; Wesierska M; Cimadevilla JM; Pokorný J; Seress L; Bures J
    Neurobiol Learn Mem; 2001 Mar; 75(2):190-213. PubMed ID: 11222060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic brain activity underlying behavioral performance and spatial strategy choice in sedentary and exercised Wistar rats.
    Sampedro-Piquero P; Zancada-Menendez C; Cuesta M; Arias JL; Begega A
    Neuroscience; 2014 Dec; 281():110-23. PubMed ID: 25281878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Different brain networks underlying the acquisition and expression of contextual fear conditioning: a metabolic mapping study.
    González-Pardo H; Conejo NM; Lana G; Arias JL
    Neuroscience; 2012 Jan; 202():234-42. PubMed ID: 22173014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.