BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 24915485)

  • 1. The effect of macromolecular crowding on the electrostatic component of barnase-barstar binding: a computational, implicit solvent-based study.
    Qi HW; Nakka P; Chen C; Radhakrishnan ML
    PLoS One; 2014; 9(6):e98618. PubMed ID: 24915485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Macromolecular crowding effects on electrostatic binding affinity: Fundamental insights from theoretical, idealized models.
    Kim R; Radhakrishnan ML
    J Chem Phys; 2021 Jun; 154(22):225101. PubMed ID: 34241219
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of binding electrostatics: charge complementarity in the barnase-barstar protein complex.
    Lee LP; Tidor B
    Protein Sci; 2001 Feb; 10(2):362-77. PubMed ID: 11266622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Barstar is electrostatically optimized for tight binding to barnase.
    Lee LP; Tidor B
    Nat Struct Biol; 2001 Jan; 8(1):73-6. PubMed ID: 11135675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atomistic modeling of macromolecular crowding predicts modest increases in protein folding and binding stability.
    Qin S; Zhou HX
    Biophys J; 2009 Jul; 97(1):12-9. PubMed ID: 19580740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computationally Modeling Electrostatic Binding Energetics in a Crowded, Dynamic Environment: Physical Insights from a Peptide-DNA System.
    Perez CP; Elmore DE; Radhakrishnan ML
    J Phys Chem B; 2019 Dec; 123(50):10718-10734. PubMed ID: 31751509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Macromolecular crowding effects on protein-protein binding affinity and specificity.
    Kim YC; Best RB; Mittal J
    J Chem Phys; 2010 Nov; 133(20):205101. PubMed ID: 21133453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How optimal are the binding energetics of barnase and barstar?
    Wang T; Tomic S; Gabdoulline RR; Wade RC
    Biophys J; 2004 Sep; 87(3):1618-30. PubMed ID: 15345541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of calculation and experiment implicates significant electrostatic contributions to the binding stability of barnase and barstar.
    Dong F; Vijayakumar M; Zhou HX
    Biophys J; 2003 Jul; 85(1):49-60. PubMed ID: 12829463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein-protein recognition: crystal structural analysis of a barnase-barstar complex at 2.0-A resolution.
    Buckle AM; Schreiber G; Fersht AR
    Biochemistry; 1994 Aug; 33(30):8878-89. PubMed ID: 8043575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Implicit solvent models for flexible protein-protein docking by molecular dynamics simulation.
    Wang T; Wade RC
    Proteins; 2003 Jan; 50(1):158-69. PubMed ID: 12471608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Downhill binding energy surface of the barnase-barstar complex.
    Wang L; Siu SW; Gu W; Helms V
    Biopolymers; 2010 Nov; 93(11):977-85. PubMed ID: 20540151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental assignment of the structure of the transition state for the association of barnase and barstar.
    Frisch C; Fersht AR; Schreiber G
    J Mol Biol; 2001 Apr; 308(1):69-77. PubMed ID: 11302708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting Molecular Crowding Effects in Ion-RNA Interactions.
    Yu T; Zhu Y; He Z; Chen SJ
    J Phys Chem B; 2016 Sep; 120(34):8837-44. PubMed ID: 27490487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction energy decomposition in protein-protein association: a quantum mechanical study of barnase-barstar complex.
    Ababou A; van der Vaart A; Gogonea V; Merz KM
    Biophys Chem; 2007 Jan; 125(1):221-36. PubMed ID: 16962699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational sampling of peptides in the presence of protein crowders from AA/CG-multiscale simulations.
    Predeus AV; Gul S; Gopal SM; Feig M
    J Phys Chem B; 2012 Jul; 116(29):8610-20. PubMed ID: 22429139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of macromolecular crowding on the folding of a polymer chain: A Wang-Landau simulation study.
    Taylor MP; Vinci C; Suzuki R
    J Chem Phys; 2020 Nov; 153(17):174901. PubMed ID: 33167653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of interprotein polarization on protein-protein binding energy.
    Ji CG; Zhang JZ
    J Comput Chem; 2012 Jun; 33(16):1416-20. PubMed ID: 22495971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Size-dependent studies of macromolecular crowding on the thermodynamic stability, structure and functional activity of proteins: in vitro and in silico approaches.
    Shahid S; Hassan MI; Islam A; Ahmad F
    Biochim Biophys Acta Gen Subj; 2017 Feb; 1861(2):178-197. PubMed ID: 27842220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.