BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 24915503)

  • 1. Dynamics of the ClpP serine protease: a model for self-compartmentalized proteases.
    Liu K; Ologbenla A; Houry WA
    Crit Rev Biochem Mol Biol; 2014; 49(5):400-12. PubMed ID: 24915503
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ClpP: a structurally dynamic protease regulated by AAA+ proteins.
    Alexopoulos JA; Guarné A; Ortega J
    J Struct Biol; 2012 Aug; 179(2):202-10. PubMed ID: 22595189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure at 1.9A of E. coli ClpP with a peptide covalently bound at the active site.
    Szyk A; Maurizi MR
    J Struct Biol; 2006 Oct; 156(1):165-74. PubMed ID: 16682229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural and theoretical studies indicate that the cylindrical protease ClpP samples extended and compact conformations.
    Kimber MS; Yu AY; Borg M; Leung E; Chan HS; Houry WA
    Structure; 2010 Jul; 18(7):798-808. PubMed ID: 20637416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The ClpP double ring tetradecameric protease exhibits plastic ring-ring interactions, and the N termini of its subunits form flexible loops that are essential for ClpXP and ClpAP complex formation.
    Gribun A; Kimber MS; Ching R; Sprangers R; Fiebig KM; Houry WA
    J Biol Chem; 2005 Apr; 280(16):16185-96. PubMed ID: 15701650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystallography and mutagenesis point to an essential role for the N-terminus of human mitochondrial ClpP.
    Kang SG; Maurizi MR; Thompson M; Mueser T; Ahvazi B
    J Struct Biol; 2004 Dec; 148(3):338-52. PubMed ID: 15522782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into the inter-ring plasticity of caseinolytic proteases from the X-ray structure of Mycobacterium tuberculosis ClpP1.
    Ingvarsson H; Maté MJ; Högbom M; Portnoï D; Benaroudj N; Alzari PM; Ortiz-Lombardía M; Unge T
    Acta Crystallogr D Biol Crystallogr; 2007 Feb; 63(Pt 2):249-59. PubMed ID: 17242518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activators of cylindrical proteases as antimicrobials: identification and development of small molecule activators of ClpP protease.
    Leung E; Datti A; Cossette M; Goodreid J; McCaw SE; Mah M; Nakhamchik A; Ogata K; El Bakkouri M; Cheng YQ; Wodak SJ; Eger BT; Pai EF; Liu J; Gray-Owen S; Batey RA; Houry WA
    Chem Biol; 2011 Sep; 18(9):1167-78. PubMed ID: 21944755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural alteration in the pore motif of the bacterial 20S proteasome homolog HslV leads to uncontrolled protein degradation.
    Park E; Lee JW; Yoo HM; Ha BH; An JY; Jeon YJ; Seol JH; Eom SH; Chung CH
    J Mol Biol; 2013 Aug; 425(16):2940-54. PubMed ID: 23707406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative NMR spectroscopy of supramolecular complexes: dynamic side pores in ClpP are important for product release.
    Sprangers R; Gribun A; Hwang PM; Houry WA; Kay LE
    Proc Natl Acad Sci U S A; 2005 Nov; 102(46):16678-83. PubMed ID: 16263929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Communication between ClpX and ClpP during substrate processing and degradation.
    Joshi SA; Hersch GL; Baker TA; Sauer RT
    Nat Struct Mol Biol; 2004 May; 11(5):404-11. PubMed ID: 15064753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent structural insights into the mechanism of ClpP protease regulation by AAA+ chaperones and small molecules.
    Mabanglo MF; Houry WA
    J Biol Chem; 2022 May; 298(5):101781. PubMed ID: 35245501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The structure of ClpP at 2.3 A resolution suggests a model for ATP-dependent proteolysis.
    Wang J; Hartling JA; Flanagan JM
    Cell; 1997 Nov; 91(4):447-56. PubMed ID: 9390554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural switching of Staphylococcus aureus Clp protease: a key to understanding protease dynamics.
    Zhang J; Ye F; Lan L; Jiang H; Luo C; Yang CG
    J Biol Chem; 2011 Oct; 286(43):37590-601. PubMed ID: 21900233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binding of the ClpA unfoldase opens the axial gate of ClpP peptidase.
    Effantin G; Maurizi MR; Steven AC
    J Biol Chem; 2010 May; 285(19):14834-40. PubMed ID: 20236930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural insights into the conformational diversity of ClpP from Bacillus subtilis.
    Lee BG; Kim MK; Song HK
    Mol Cells; 2011 Dec; 32(6):589-95. PubMed ID: 22080375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ClpP protease activation results from the reorganization of the electrostatic interaction networks at the entrance pores.
    Mabanglo MF; Leung E; Vahidi S; Seraphim TV; Eger BT; Bryson S; Bhandari V; Zhou JL; Mao YQ; Rizzolo K; Barghash MM; Goodreid JD; Phanse S; Babu M; Barbosa LRS; Ramos CHI; Batey RA; Kay LE; Pai EF; Houry WA
    Commun Biol; 2019; 2():410. PubMed ID: 31754640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The asymmetry in the mature amino-terminus of ClpP facilitates a local symmetry match in ClpAP and ClpXP complexes.
    Bewley MC; Graziano V; Griffin K; Flanagan JM
    J Struct Biol; 2006 Feb; 153(2):113-28. PubMed ID: 16406682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of ClpP protease by ADEP antibiotics: insights from hydrogen exchange mass spectrometry.
    Sowole MA; Alexopoulos JA; Cheng YQ; Ortega J; Konermann L
    J Mol Biol; 2013 Nov; 425(22):4508-19. PubMed ID: 23948506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular structure of a novel membrane protease specific for a stomatin homolog from the hyperthermophilic archaeon Pyrococcus horikoshii.
    Yokoyama H; Matsui E; Akiba T; Harata K; Matsui I
    J Mol Biol; 2006 May; 358(4):1152-64. PubMed ID: 16574150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.