These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
311 related articles for article (PubMed ID: 24915982)
1. Role of hydrophobicity on self-assembly by peptide amphiphiles via molecular dynamics simulations. Fu IW; Markegard CB; Chu BK; Nguyen HD Langmuir; 2014 Jul; 30(26):7745-54. PubMed ID: 24915982 [TBL] [Abstract][Full Text] [Related]
2. The role of electrostatics and temperature on morphological transitions of hydrogel nanostructures self-assembled by peptide amphiphiles via molecular dynamics simulations. Fu IW; Markegard CB; Chu BK; Nguyen HD Adv Healthc Mater; 2013 Oct; 2(10):1388-400. PubMed ID: 23554376 [TBL] [Abstract][Full Text] [Related]
3. Solvent effects on kinetic mechanisms of self-assembly by peptide amphiphiles via molecular dynamics simulations. Fu IW; Markegard CB; Nguyen HD Langmuir; 2015; 31(1):315-24. PubMed ID: 25488898 [TBL] [Abstract][Full Text] [Related]
4. Sequence-Dependent Structural Stability of Self-Assembled Cylindrical Nanofibers by Peptide Amphiphiles. Fu IW; Nguyen HD Biomacromolecules; 2015 Jul; 16(7):2209-19. PubMed ID: 26068113 [TBL] [Abstract][Full Text] [Related]
6. Nanostructures from the self-assembly of α-helical peptide amphiphiles. Meng Q; Kou Y; Ma X; Guo L; Liu K J Pept Sci; 2014 Mar; 20(3):223-8. PubMed ID: 24478261 [TBL] [Abstract][Full Text] [Related]
7. Different nanostructures caused by competition of intra- and inter-β-sheet interactions in hierarchical self-assembly of short peptides. Zhou P; Deng L; Wang Y; Lu JR; Xu H J Colloid Interface Sci; 2016 Feb; 464():219-28. PubMed ID: 26619132 [TBL] [Abstract][Full Text] [Related]
8. Self-assembly of short peptide amphiphiles: the cooperative effect of hydrophobic interaction and hydrogen bonding. Han S; Cao S; Wang Y; Wang J; Xia D; Xu H; Zhao X; Lu JR Chemistry; 2011 Nov; 17(46):13095-102. PubMed ID: 21956759 [TBL] [Abstract][Full Text] [Related]
9. Spontaneous structural transition in phospholipid-inspired aromatic phosphopeptide nanostructures. Pellach M; Atsmon-Raz Y; Simonovsky E; Gottlieb H; Jacoby G; Beck R; Adler-Abramovich L; Miller Y; Gazit E ACS Nano; 2015; 9(4):4085-95. PubMed ID: 25802000 [TBL] [Abstract][Full Text] [Related]
10. Amphiphilic Peptides A6K and V6K Display Distinct Oligomeric Structures and Self-Assembly Dynamics: A Combined All-Atom and Coarse-Grained Simulation Study. Sun Y; Qian Z; Guo C; Wei G Biomacromolecules; 2015 Sep; 16(9):2940-9. PubMed ID: 26301845 [TBL] [Abstract][Full Text] [Related]
11. All-Atom Molecular Dynamics Simulations of Peptide Amphiphile Assemblies That Spontaneously Form Twisted and Helical Ribbon Structures. Lai CT; Rosi NL; Schatz GC J Phys Chem Lett; 2017 May; 8(10):2170-2174. PubMed ID: 28453939 [TBL] [Abstract][Full Text] [Related]
12. Self-assembly of Arg-Phe nanostructures via the solid-vapor phase method. Liberato MS; Kogikoski S; Silva ER; Coutinho-Neto MD; Scott LP; Silva RH; Oliveira VX; Ando RA; Alves WA J Phys Chem B; 2013 Jan; 117(3):733-40. PubMed ID: 23286315 [TBL] [Abstract][Full Text] [Related]
13. Effects of hydrophobic interaction strength on the self-assembled structures of model peptides. Mu Y; Yu M Soft Matter; 2014 Jul; 10(27):4956-65. PubMed ID: 24888420 [TBL] [Abstract][Full Text] [Related]
14. A tail of two peptide amphiphiles: effect of conjugation with hydrophobic polymer on folding of peptide sequences. Chu BK; Fu IW; Markegard CB; Choi SE; Nguyen HD Biomacromolecules; 2014 Sep; 15(9):3313-20. PubMed ID: 25068712 [TBL] [Abstract][Full Text] [Related]
15. A Molecular Dynamics Study on Controlling the Self-Assembly of β-Sheet Peptides with Designer Nanorings. Park S; Lee M; Shin S Chem Asian J; 2015 Aug; 10(8):1684-9. PubMed ID: 26053471 [TBL] [Abstract][Full Text] [Related]
16. Tuning β-sheet peptide self-assembly and hydrogelation behavior by modification of sequence hydrophobicity and aromaticity. Bowerman CJ; Liyanage W; Federation AJ; Nilsson BL Biomacromolecules; 2011 Jul; 12(7):2735-45. PubMed ID: 21568346 [TBL] [Abstract][Full Text] [Related]
17. Toward the development of peptide nanofilaments and nanoropes as smart materials. Wagner DE; Phillips CL; Ali WM; Nybakken GE; Crawford ED; Schwab AD; Smith WF; Fairman R Proc Natl Acad Sci U S A; 2005 Sep; 102(36):12656-61. PubMed ID: 16129839 [TBL] [Abstract][Full Text] [Related]
18. Co-assembly of Peptide Amphiphiles and Lipids into Supramolecular Nanostructures Driven by Anion-π Interactions. Yu Z; Erbas A; Tantakitti F; Palmer LC; Jackman JA; Olvera de la Cruz M; Cho NJ; Stupp SI J Am Chem Soc; 2017 Jun; 139(23):7823-7830. PubMed ID: 28571316 [TBL] [Abstract][Full Text] [Related]
19. Modeling Interactions within and between Peptide Amphiphile Supramolecular Filaments. Sasselli IR; Syrgiannis Z; Sather NA; Palmer LC; Stupp SI J Phys Chem B; 2022 Jan; 126(3):650-659. PubMed ID: 35029997 [TBL] [Abstract][Full Text] [Related]
20. Self-assembly of peptide amphiphiles: from molecules to nanostructures to biomaterials. Cui H; Webber MJ; Stupp SI Biopolymers; 2010; 94(1):1-18. PubMed ID: 20091874 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]