BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 24916043)

  • 1. Carbon storage and potential methane production in the Hudson Bay Lowlands since mid-Holocene peat initiation.
    Packalen MS; Finkelstein SA; McLaughlin JW
    Nat Commun; 2014 Jun; 5():4078. PubMed ID: 24916043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tropical Peat and Peatland Development in the Floodplains of the Greater Pamba Basin, South-Western India during the Holocene.
    Kumaran NK; Padmalal D; Limaye RB; S VM; Jennerjahn T; Gamre PG
    PLoS One; 2016; 11(5):e0154297. PubMed ID: 27163658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Climatic controls on the dynamic lateral expansion of northern peatlands and its potential implication for the 'anomalous' atmospheric CH
    Peng H; Nijp JJ; Ratcliffe JL; Li C; Hong B; Lidberg W; Zeng M; Mauquoy D; Bishop K; Nilsson MB
    Sci Total Environ; 2024 Jan; 908():168450. PubMed ID: 37967626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid deglacial and early Holocene expansion of peatlands in Alaska.
    Jones MC; Yu Z
    Proc Natl Acad Sci U S A; 2010 Apr; 107(16):7347-52. PubMed ID: 20368451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ecosystem state shifts during long-term development of an Amazonian peatland.
    Swindles GT; Morris PJ; Whitney B; Galloway JM; Gałka M; Gallego-Sala A; Macumber AL; Mullan D; Smith MW; Amesbury MJ; Roland TP; Sanei H; Patterson RT; Sanderson N; Parry L; Charman DJ; Lopez O; Valderamma E; Watson EJ; Ivanovic RF; Valdes PJ; Turner TE; Lähteenoja O
    Glob Chang Biol; 2018 Feb; 24(2):738-757. PubMed ID: 29055083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon accumulation of tropical peatlands over millennia: a modeling approach.
    Kurnianto S; Warren M; Talbot J; Kauffman B; Murdiyarso D; Frolking S
    Glob Chang Biol; 2015 Jan; 21(1):431-44. PubMed ID: 25044171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Response of carbon cycle to drier conditions in the mid-Holocene in central China.
    Huang X; Pancost RD; Xue J; Gu Y; Evershed RP; Xie S
    Nat Commun; 2018 Apr; 9(1):1369. PubMed ID: 29636471
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Age, extent and carbon storage of the central Congo Basin peatland complex.
    Dargie GC; Lewis SL; Lawson IT; Mitchard ET; Page SE; Bocko YE; Ifo SA
    Nature; 2017 Feb; 542(7639):86-90. PubMed ID: 28077869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An appraisal of Indonesia's immense peat carbon stock using national peatland maps: uncertainties and potential losses from conversion.
    Warren M; Hergoualc'h K; Kauffman JB; Murdiyarso D; Kolka R
    Carbon Balance Manag; 2017 Dec; 12(1):12. PubMed ID: 28527145
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Terrestrial CO
    Balogun O; Bello R; Higuchi K
    Sci Total Environ; 2023 Jun; 875():162591. PubMed ID: 36906026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature and peat type control CO2 and CH4 production in Alaskan permafrost peats.
    Treat CC; Wollheim WM; Varner RK; Grandy AS; Talbot J; Frolking S
    Glob Chang Biol; 2014 Aug; 20(8):2674-86. PubMed ID: 24616169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global peatland initiation driven by regionally asynchronous warming.
    Morris PJ; Swindles GT; Valdes PJ; Ivanovic RF; Gregoire LJ; Smith MW; Tarasov L; Haywood AM; Bacon KL
    Proc Natl Acad Sci U S A; 2018 May; 115(19):4851-4856. PubMed ID: 29666256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identifying main uncertainties in estimating past and present radiative forcing of peatlands.
    Mathijssen PJH; Tuovinen JP; Lohila A; Väliranta M; Tuittila ES
    Glob Chang Biol; 2022 Jul; 28(13):4069-4084. PubMed ID: 35377520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peatland microbial communities and decomposition processes in the james bay lowlands, Canada.
    Preston MD; Smemo KA; McLaughlin JW; Basiliko N
    Front Microbiol; 2012; 3():70. PubMed ID: 22393328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variations in the archaeal community and associated methanogenesis in peat profiles of three typical peatland types in China.
    Chen X; Xue D; Wang Y; Qiu Q; Wu L; Wang M; Liu J; Chen H
    Environ Microbiome; 2023 Jun; 18(1):48. PubMed ID: 37280702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peatland hydrology and carbon release: why small-scale process matters.
    Holden J
    Philos Trans A Math Phys Eng Sci; 2005 Dec; 363(1837):2891-913. PubMed ID: 16286296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of inundation, oxygen and temperature on carbon mineralization in boreal ecosystems.
    Kim Y; Ullah S; Roulet NT; Moore TR
    Sci Total Environ; 2015 Apr; 511():381-92. PubMed ID: 25555258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon storage dynamics in peatlands: Comparing recent- and long-term accumulation histories in southern Patagonia.
    Bunsen MS; Loisel J
    Glob Chang Biol; 2020 Oct; 26(10):5778-5795. PubMed ID: 32623771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The elemental enrichments at Dajiuhu Peatland in the Middle Yangtze Valley in response to changes in East Asian monsoon and human activity since 20,000 cal yr BP.
    Liu H; Gu Y; Qin Y; Yu Z; Huang X; Xie S; Zheng M; Zhang Z; Cheng S
    Sci Total Environ; 2021 Feb; 757():143990. PubMed ID: 33316522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coastal peat-beds and peatlands of the southern North Sea: their past, present and future.
    Waller M; Kirby J
    Biol Rev Camb Philos Soc; 2021 Apr; 96(2):408-432. PubMed ID: 33140559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.