These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 24916043)

  • 21. Stable isotopes reveal widespread anaerobic methane oxidation across latitude and peatland type.
    Gupta V; Smemo KA; Yavitt JB; Fowle D; Branfireun B; Basiliko N
    Environ Sci Technol; 2013 Aug; 47(15):8273-9. PubMed ID: 23822884
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The amount of carbon released from peat and forest fires in Indonesia during 1997.
    Page SE; Siegert F; Rieley JO; Boehm HD; Jaya A; Limin S
    Nature; 2002 Nov; 420(6911):61-5. PubMed ID: 12422213
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rapid early development of circumarctic peatlands and atmospheric CH4 and CO2 variations.
    Macdonald GM; Beilman DW; Kremenetski KV; Sheng Y; Smith LC; Velichko AA
    Science; 2006 Oct; 314(5797):285-8. PubMed ID: 17038618
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The peatlands developing history in the Sanjiang Plain, NE China, and its response to East Asian monsoon variation.
    Zhang Z; Xing W; Wang G; Tong S; Lv X; Sun J
    Sci Rep; 2015 Jun; 5():11316. PubMed ID: 26076653
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Solute depletion and reduced hydrological connectivity in subarctic patterned peatlands disturbed by mine dewatering.
    Balliston N; Sutton O; Price J
    Sci Total Environ; 2024 Feb; 913():169442. PubMed ID: 38157899
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Holocene variations in peatland methane cycling associated with the Asian summer monsoon system.
    Zheng Y; Singarayer JS; Cheng P; Yu X; Liu Z; Valdes PJ; Pancost RD
    Nat Commun; 2014 Aug; 5():4631. PubMed ID: 25135106
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Peatland Ecosystem Processes in the Maritime Antarctic During Warm Climates.
    Loisel J; Yu Z; Beilman DW; Kaiser K; Parnikoza I
    Sci Rep; 2017 Sep; 7(1):12344. PubMed ID: 28955055
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Simulating carbon accumulation and loss in the central Congo peatlands.
    Young DM; Baird AJ; Morris PJ; Dargie GC; Mampouya Wenina YE; Mbemba M; Boom A; Cook P; Betts R; Burke E; Bocko YE; Chadburn S; Crabtree DE; Crezee B; Ewango CEN; Garcin Y; Georgiou S; Girkin NT; Gulliver P; Hawthorne D; Ifo SA; Lawson IT; Page SE; Jovani-Sancho AJ; Schefuß E; Sciumbata M; Sjögersten S; Lewis SL
    Glob Chang Biol; 2023 Dec; 29(23):6812-6827. PubMed ID: 37815703
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Massive peatland carbon banks vulnerable to rising temperatures.
    Hopple AM; Wilson RM; Kolton M; Zalman CA; Chanton JP; Kostka J; Hanson PJ; Keller JK; Bridgham SD
    Nat Commun; 2020 May; 11(1):2373. PubMed ID: 32398638
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Northern peatland initiation lagged abrupt increases in deglacial atmospheric CH4.
    Reyes AV; Cooke CA
    Proc Natl Acad Sci U S A; 2011 Mar; 108(12):4748-53. PubMed ID: 21368146
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Northern Peatlands: Role in the Carbon Cycle and Probable Responses to Climatic Warming.
    Gorham E
    Ecol Appl; 1991 May; 1(2):182-195. PubMed ID: 27755660
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An expert system model for mapping tropical wetlands and peatlands reveals South America as the largest contributor.
    Gumbricht T; Roman-Cuesta RM; Verchot L; Herold M; Wittmann F; Householder E; Herold N; Murdiyarso D
    Glob Chang Biol; 2017 Sep; 23(9):3581-3599. PubMed ID: 28295834
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Siberian peatlands a net carbon sink and global methane source since the early Holocene.
    Smith LC; MacDonald GM; Velichko AA; Beilman DW; Borisova OK; Frey KE; Kremenetski KV; Sheng Y
    Science; 2004 Jan; 303(5656):353-6. PubMed ID: 14726587
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tropical/Subtropical Peatland Development and Global CH4 during the Last Glaciation.
    Xu H; Lan J; Sheng E; Liu Y; Liu B; Yu K; Ye Y; Cheng P; Qiang X; Lu F; Wang X
    Sci Rep; 2016 Jul; 6():30431. PubMed ID: 27465566
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Small-scale variability in peatland pore-water biogeochemistry, Hudson Bay Lowland, Canada.
    Ulanowski TA; Branfireun BA
    Sci Total Environ; 2013 Jun; 454-455():211-8. PubMed ID: 23542673
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Using
    Shi Y; Wang Z; He C; Zhang X; Sheng L; Ren X
    Sci Rep; 2017 Jan; 7():40848. PubMed ID: 28098207
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Aquifer depressurization and water table lowering induces landscape scale subsidence and hydrophysical change in peatlands of the Hudson Bay Lowlands.
    Balliston NE; Price JS
    Sci Total Environ; 2023 Jan; 855():158837. PubMed ID: 36116649
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Climatic Drivers for Multi-Decadal Shifts in Solute Transport and Methane Production Zones within a Large Peat Basin.
    Glaser PH; Siegel DI; Chanton JP; Reeve AS; Rosenberry DO; Corbett JE; Levy Z
    Global Biogeochem Cycles; 2016 Nov; 30(11):1578-1598. PubMed ID: 31649419
    [TBL] [Abstract][Full Text] [Related]  

  • 39. How temporal patterns in rainfall determine the geomorphology and carbon fluxes of tropical peatlands.
    Cobb AR; Hoyt AM; Gandois L; Eri J; Dommain R; Abu Salim K; Kai FM; Haji Su'ut NS; Harvey CF
    Proc Natl Acad Sci U S A; 2017 Jun; 114(26):E5187-E5196. PubMed ID: 28607068
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Response of testate amoebae to a late Holocene ecosystem shift in an Amazonian peatland.
    Swindles GT; Kelly TJ; Roucoux KH; Lawson IT
    Eur J Protistol; 2018 Jun; 64():13-19. PubMed ID: 29621652
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.