BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 24916172)

  • 1. GC content evolution in coding regions of angiosperm genomes: a unifying hypothesis.
    Glémin S; Clément Y; David J; Ressayre A
    Trends Genet; 2014 Jul; 30(7):263-70. PubMed ID: 24916172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GC-biased gene conversion and selection affect GC content in the Oryza genus (rice).
    Muyle A; Serres-Giardi L; Ressayre A; Escobar J; Glémin S
    Mol Biol Evol; 2011 Sep; 28(9):2695-706. PubMed ID: 21504892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GC-biased gene conversion impacts ribosomal DNA evolution in vertebrates, angiosperms, and other eukaryotes.
    Escobar JS; Glémin S; Galtier N
    Mol Biol Evol; 2011 Sep; 28(9):2561-75. PubMed ID: 21444650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The bimodal distribution of genic GC content is ancestral to monocot species.
    Clément Y; Fustier MA; Nabholz B; Glémin S
    Genome Biol Evol; 2014 Dec; 7(1):336-48. PubMed ID: 25527839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Introns Structure Patterns of Variation in Nucleotide Composition in Arabidopsis thaliana and Rice Protein-Coding Genes.
    Ressayre A; Glémin S; Montalent P; Serre-Giardi L; Dillmann C; Joets J
    Genome Biol Evol; 2015 Oct; 7(10):2913-28. PubMed ID: 26450849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biased gene conversion and GC-content evolution in the coding sequences of reptiles and vertebrates.
    Figuet E; Ballenghien M; Romiguier J; Galtier N
    Genome Biol Evol; 2014 Dec; 7(1):240-50. PubMed ID: 25527834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. History of plastid DNA insertions reveals weak deletion and at mutation biases in angiosperm mitochondrial genomes.
    Sloan DB; Wu Z
    Genome Biol Evol; 2014 Nov; 6(12):3210-21. PubMed ID: 25416619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Meiotic recombination strongly influences GC-content evolution in short regions in the mouse genome.
    Clément Y; Arndt PF
    Mol Biol Evol; 2013 Dec; 30(12):2612-8. PubMed ID: 24030552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolutionary consequences of DNA methylation on the GC content in vertebrate genomes.
    Mugal CF; Arndt PF; Holm L; Ellegren H
    G3 (Bethesda); 2015 Jan; 5(3):441-7. PubMed ID: 25591920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biased gene conversion and the evolution of mammalian genomic landscapes.
    Duret L; Galtier N
    Annu Rev Genomics Hum Genet; 2009; 10():285-311. PubMed ID: 19630562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Angiosperm mitochondrial genomes and mutations.
    Kubo T; Newton KJ
    Mitochondrion; 2008 Jan; 8(1):5-14. PubMed ID: 18065297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recombination drives the evolution of GC-content in the human genome.
    Meunier J; Duret L
    Mol Biol Evol; 2004 Jun; 21(6):984-90. PubMed ID: 14963104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The rate, not the spectrum, of base pair substitutions changes at a GC-content transition in the human NF1 gene region: implications for the evolution of the mammalian genome structure.
    Schmegner C; Hoegel J; Vogel W; Assum G
    Genetics; 2007 Jan; 175(1):421-8. PubMed ID: 17057231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phylogenetic patterns of GC-biased gene conversion in placental mammals and the evolutionary dynamics of recombination landscapes.
    Lartillot N
    Mol Biol Evol; 2013 Mar; 30(3):489-502. PubMed ID: 23079417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cross-species analysis of genic GC3 content and DNA methylation patterns.
    Tatarinova T; Elhaik E; Pellegrini M
    Genome Biol Evol; 2013; 5(8):1443-56. PubMed ID: 23833164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GC-biased gene conversion links the recombination landscape and demography to genomic base composition: GC-biased gene conversion drives genomic base composition across a wide range of species.
    Mugal CF; Weber CC; Ellegren H
    Bioessays; 2015 Dec; 37(12):1317-26. PubMed ID: 26445215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying the basal angiosperm node in chloroplast genome phylogenies: sampling one's way out of the Felsenstein zone.
    Leebens-Mack J; Raubeson LA; Cui L; Kuehl JV; Fourcade MH; Chumley TW; Boore JL; Jansen RK; depamphilis CW
    Mol Biol Evol; 2005 Oct; 22(10):1948-63. PubMed ID: 15944438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Less is more in mammalian phylogenomics: AT-rich genes minimize tree conflicts and unravel the root of placental mammals.
    Romiguier J; Ranwez V; Delsuc F; Galtier N; Douzery EJ
    Mol Biol Evol; 2013 Sep; 30(9):2134-44. PubMed ID: 23813978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ectopic gene conversions increase the G + C content of duplicated yeast and Arabidopsis genes.
    Benovoy D; Morris RT; Morin A; Drouin G
    Mol Biol Evol; 2005 Sep; 22(9):1865-8. PubMed ID: 15917495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The relationship of recombination rate, genome structure, and patterns of molecular evolution across angiosperms.
    Tiley GP; Burleigh JG
    BMC Evol Biol; 2015 Sep; 15():194. PubMed ID: 26377000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.