These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 24916409)

  • 1. Structure factor model for understanding the measured backscatter coefficients from concentrated cell pellet biophantoms.
    Franceschini E; Guillermin R; Tourniaire F; Roffino S; Lamy E; Landrier JF
    J Acoust Soc Am; 2014 Jun; 135(6):3620-31. PubMed ID: 24916409
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasonic backscatter coefficient quantitative estimates from Chinese hamster ovary cell pellet biophantoms.
    Teisseire M; Han A; Abuhabsah R; Blue JP; Sarwate S; O'Brien WD
    J Acoust Soc Am; 2010 Nov; 128(5):3175-80. PubMed ID: 21110612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative Characterization of Tissue Microstructure in Concentrated Cell Pellet Biophantoms Based on the Structure Factor Model.
    Franceschini E; Monchy R; Mamou J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Sep; 63(9):1321-1334. PubMed ID: 27046896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental assessment of four ultrasound scattering models for characterizing concentrated tissue-mimicking phantoms.
    Franceschini E; Guillermin R
    J Acoust Soc Am; 2012 Dec; 132(6):3735-47. PubMed ID: 23231104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure function for high-concentration biophantoms of polydisperse scatterer sizes.
    Han A; O'Brien W
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Feb; 62(2):303-18. PubMed ID: 25643080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of Scatterer Parameters From Ultrasound Scattering Models Taking Into Account Scattering From Nuclei and Cells of Cell-Pellet Biophantoms and Ex Vivo Tumors.
    Muleki-Seya P; O'Brien WD
    Ultrason Imaging; 2024 Jun; ():1617346241256120. PubMed ID: 38873927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrasonic backscatter coefficient quantitative estimates from high-concentration Chinese Hamster Ovary cell pellet biophantoms.
    Han A; Abuhabsah R; Blue JP; Sarwate S; O'Brien WD
    J Acoust Soc Am; 2011 Dec; 130(6):4139-47. PubMed ID: 22225068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrasound Scattering From Cell-Pellet Biophantoms and Ex Vivo Tumors Provides Insight Into the Cellular Structure Involved in Scattering.
    Muleki-Seya P; O'Brien WD
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Feb; 69(2):637-649. PubMed ID: 34822328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing the Cellular Size Distribution in Cell Samples Undergoing Cell Death.
    Franceschini E; Balasse L; Roffino S; Guillet B
    Ultrasound Med Biol; 2019 Jul; 45(7):1787-1798. PubMed ID: 31023498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure Function Estimated From Histological Tissue Sections.
    Han A; O'Brien WD
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Sep; 63(9):1296-305. PubMed ID: 27046871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Size Polydispersity and Dense Media on Quantitative Ultrasound Estimates.
    Lombard O; Franceschini E
    IEEE Trans Ultrason Ferroelectr Freq Control; 2024 May; 71(5):572-583. PubMed ID: 38526898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantifying scattering from dense media using two-dimensional impedance maps.
    Tamura K; Mamou J; Yoshida K; Yamaguchi T; Franceschini E
    J Acoust Soc Am; 2020 Sep; 148(3):1681. PubMed ID: 33003867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The measurement of ultrasound backscattering from cell pellet biophantoms and tumors ex vivo.
    Han A; Abuhabsah R; Miller RJ; Sarwate S; O'Brien WD
    J Acoust Soc Am; 2013 Jul; 134(1):686-93. PubMed ID: 23862841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interlaboratory comparison of backscatter coefficient estimates for tissue-mimicking phantoms.
    Anderson JJ; Herd MT; King MR; Haak A; Hafez ZT; Song J; Oelze ML; Madsen EL; Zagzebski JA; O'Brien WD; Hall TJ
    Ultrason Imaging; 2010 Jan; 32(1):48-64. PubMed ID: 20690431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Vivo Estimation of Attenuation and Backscatter Coefficients From Human Thyroids.
    Rouyer J; Cueva T; Yamamoto T; Portal A; Lavarello RJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Sep; 63(9):1253-1261. PubMed ID: 26955025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of Backscatter Coefficients Using an In Situ Calibration Source.
    Nguyen TN; Tam AJ; Do MN; Oelze ML
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Feb; 67(2):308-317. PubMed ID: 31567079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-frequency backscatter and attenuation measurements of selected bovine tissues between 10 and 30 MHz.
    Maruvada S; Shung KK; Wang SH
    Ultrasound Med Biol; 2000 Jul; 26(6):1043-9. PubMed ID: 10996704
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative ultrasound techniques for assessing thermal ablation: Measurement of the backscatter coefficient from ex vivo human liver.
    Rohfritsch A; Franceschini E; Dupré A; Melodelima D
    Med Phys; 2023 Nov; 50(11):6908-6919. PubMed ID: 37769022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasonic backscattering and microstructure in sheared concentrated suspensions.
    Lombard O; Rouyer J; Debieu E; Blanc F; Franceschini E
    J Acoust Soc Am; 2020 Mar; 147(3):1359. PubMed ID: 32237850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extended three-dimensional impedance map methods for identifying ultrasonic scattering sites.
    Mamou J; Oelze ML; O'Brien WD; Zachary JF
    J Acoust Soc Am; 2008 Feb; 123(2):1195-1208. PubMed ID: 18247919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.