BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 24916767)

  • 1. Transcriptomic analysis of Sorghum bicolor responding to combined heat and drought stress.
    Johnson SM; Lim FL; Finkler A; Fromm H; Slabas AR; Knight MR
    BMC Genomics; 2014 Jun; 15(1):456. PubMed ID: 24916767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cross-species multiple environmental stress responses: An integrated approach to identify candidate genes for multiple stress tolerance in sorghum (Sorghum bicolor (L.) Moench) and related model species.
    Woldesemayat AA; Modise DM; Gemeildien J; Ndimba BK; Christoffels A
    PLoS One; 2018; 13(3):e0192678. PubMed ID: 29590108
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional annotation of the transcriptome of Sorghum bicolor in response to osmotic stress and abscisic acid.
    Dugas DV; Monaco MK; Olsen A; Klein RR; Kumari S; Ware D; Klein PE
    BMC Genomics; 2011 Oct; 12():514. PubMed ID: 22008187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptomic analysis comparing stay-green and senescent Sorghum bicolor lines identifies a role for proline biosynthesis in the stay-green trait.
    Johnson SM; Cummins I; Lim FL; Slabas AR; Knight MR
    J Exp Bot; 2015 Dec; 66(22):7061-73. PubMed ID: 26320239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct Preflowering Drought Tolerance Strategies of
    Ogden AJ; Abdali S; Engbrecht KM; Zhou M; Handakumbura PP
    Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33352693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential responses of sorghum genotypes to drought stress revealed by physio-chemical and transcriptional analysis.
    Rajarajan K; Ganesamurthy K; Raveendran M; Jeyakumar P; Yuvaraja A; Sampath P; Prathima PT; Senthilraja C
    Mol Biol Rep; 2021 Mar; 48(3):2453-2462. PubMed ID: 33755850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcription Factors Associated with Abiotic and Biotic Stress Tolerance and Their Potential for Crops Improvement.
    Baillo EH; Kimotho RN; Zhang Z; Xu P
    Genes (Basel); 2019 Sep; 10(10):. PubMed ID: 31575043
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Association mapping by aerial drone reveals 213 genetic associations for Sorghum bicolor biomass traits under drought.
    Spindel JE; Dahlberg J; Colgan M; Hollingsworth J; Sievert J; Staggenborg SH; Hutmacher R; Jansson C; Vogel JP
    BMC Genomics; 2018 Sep; 19(1):679. PubMed ID: 30223789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wide-ranging transcriptome remodelling mediated by alternative polyadenylation in response to abiotic stresses in Sorghum.
    Chakrabarti M; de Lorenzo L; Abdel-Ghany SE; Reddy ASN; Hunt AG
    Plant J; 2020 Jun; 102(5):916-930. PubMed ID: 31909843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microarray analysis of differentially expressed mRNAs and miRNAs in young leaves of sorghum under dry-down conditions.
    Pasini L; Bergonti M; Fracasso A; Marocco A; Amaducci S
    J Plant Physiol; 2014 Apr; 171(7):537-48. PubMed ID: 24655390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying differentially expressed proteins in sorghum cell cultures exposed to osmotic stress.
    Ngara R; Ramulifho E; Movahedi M; Shargie NG; Brown AP; Chivasa S
    Sci Rep; 2018 Jun; 8(1):8671. PubMed ID: 29875393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systematic analysis of NAC transcription factors' gene family and identification of post-flowering drought stress responsive members in sorghum.
    Sanjari S; Shirzadian-Khorramabad R; Shobbar ZS; Shahbazi M
    Plant Cell Rep; 2019 Mar; 38(3):361-376. PubMed ID: 30627770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pathways and Network Based Analysis of Candidate Genes to Reveal Cross-Talk and Specificity in the Sorghum (
    Woldesemayat AA; Ntwasa M
    Front Genet; 2018; 9():557. PubMed ID: 30515190
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-wide Identification of WRKY transcription factor family members in sorghum (Sorghum bicolor (L.) moench).
    Baillo EH; Hanif MS; Guo Y; Zhang Z; Xu P; Algam SA
    PLoS One; 2020; 15(8):e0236651. PubMed ID: 32804948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sorghum in dryland: morphological, physiological, and molecular responses of sorghum under drought stress.
    Abreha KB; Enyew M; Carlsson AS; Vetukuri RR; Feyissa T; Motlhaodi T; Ng'uni D; Geleta M
    Planta; 2021 Dec; 255(1):20. PubMed ID: 34894286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Revealing critical mechanisms in determining sorghum resistance to drought and salt using mRNA, small RNA and degradome sequencing.
    Li Q; Wang J; Liu Q; Zhang J; Zhu X; Hua Y; Zhou T; Yan S
    BMC Plant Biol; 2024 Jun; 24(1):547. PubMed ID: 38872092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MicroRNA expression profiles in response to drought stress in Sorghum bicolor.
    Hamza NB; Sharma N; Tripathi A; Sanan-Mishra N
    Gene Expr Patterns; 2016 Mar; 20(2):88-98. PubMed ID: 26772909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SbWRKY30 enhances the drought tolerance of plants and regulates a drought stress-responsive gene, SbRD19, in sorghum.
    Yang Z; Chi X; Guo F; Jin X; Luo H; Hawar A; Chen Y; Feng K; Wang B; Qi J; Yang Y; Sun B
    J Plant Physiol; 2020; 246-247():153142. PubMed ID: 32112957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Drought tolerance strategies highlighted by two Sorghum bicolor races in a dry-down experiment.
    Fracasso A; Trindade L; Amaducci S
    J Plant Physiol; 2016 Jan; 190():1-14. PubMed ID: 26624226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Association between Reactive Oxygen Species, Transcription Factors, and Candidate Genes in Drought-Resistant Sorghum.
    Liu J; Wang X; Wu H; Zhu Y; Ahmad I; Dong G; Zhou G; Wu Y
    Int J Mol Sci; 2024 Jun; 25(12):. PubMed ID: 38928168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.