These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 24917137)
1. RNA expression analysis of passive transfer myasthenia supports extraocular muscle as a unique immunological environment. Zhou Y; Kaminski HJ; Gong B; Cheng G; Feuerman JM; Kusner L Invest Ophthalmol Vis Sci; 2014 Jun; 55(7):4348-59. PubMed ID: 24917137 [TBL] [Abstract][Full Text] [Related]
2. Differential RNA Expression Profile of Skeletal Muscle Induced by Experimental Autoimmune Myasthenia Gravis in Rats. Kaminski HJ; Himuro K; Alshaikh J; Gong B; Cheng G; Kusner LL Front Physiol; 2016; 7():524. PubMed ID: 27891095 [TBL] [Abstract][Full Text] [Related]
3. Increased expression of rapsyn in muscles prevents acetylcholine receptor loss in experimental autoimmune myasthenia gravis. Losen M; Stassen MH; Martínez-Martínez P; Machiels BM; Duimel H; Frederik P; Veldman H; Wokke JH; Spaans F; Vincent A; De Baets MH Brain; 2005 Oct; 128(Pt 10):2327-37. PubMed ID: 16150851 [TBL] [Abstract][Full Text] [Related]
4. Complement regulators in extraocular muscle and experimental autoimmune myasthenia gravis. Kaminski HJ; Li Z; Richmonds C; Lin F; Medof ME Exp Neurol; 2004 Oct; 189(2):333-42. PubMed ID: 15380483 [TBL] [Abstract][Full Text] [Related]
5. Proteomic analysis of rat tibialis anterior muscles at different stages of experimental autoimmune myasthenia gravis. Gomez AM; Vanheel A; Losen M; Molenaar PC; De Baets MH; Noben JP; Hellings N; Martinez-Martinez P J Neuroimmunol; 2013 Aug; 261(1-2):141-5. PubMed ID: 23791150 [TBL] [Abstract][Full Text] [Related]
6. Ocular myasthenia gravis induced by human acetylcholine receptor ϵ subunit immunization in HLA DR3 transgenic mice. Wu X; Tuzun E; Saini SS; Wang J; Li J; Aguilera-Aguirre L; Huda R; Christadoss P Immunol Lett; 2015 Dec; 168(2):306-12. PubMed ID: 26493475 [TBL] [Abstract][Full Text] [Related]
7. Myocyte production of nitric oxide in response to AChR-reactive antibodies in two inbred rat strains may influence disease outcome in experimental myasthenia gravis. Garcia YR; Pothitakis JC; Krolick KA Clin Immunol; 2003 Feb; 106(2):116-26. PubMed ID: 12672402 [TBL] [Abstract][Full Text] [Related]
8. Extraocular muscle characteristics related to myasthenia gravis susceptibility. Liu R; Xu H; Wang G; Li J; Gou L; Zhang L; Miao J; Li Z PLoS One; 2013; 8(2):e55611. PubMed ID: 23409007 [TBL] [Abstract][Full Text] [Related]
9. Overexpression of rapsyn in rat muscle increases acetylcholine receptor levels in chronic experimental autoimmune myasthenia gravis. Martínez-Martínez P; Losen M; Duimel H; Frederik P; Spaans F; Molenaar P; Vincent A; De Baets MH Am J Pathol; 2007 Feb; 170(2):644-57. PubMed ID: 17255332 [TBL] [Abstract][Full Text] [Related]
10. Changes in acetylcholinesterase in experimental autoimmune myasthenia gravis and in response to treatment with a specific antisense. Blotnick E; Hamra-Amitai Y; Wald C; Brenner T; Anglister L Eur J Neurosci; 2012 Oct; 36(8):3077-85. PubMed ID: 22805122 [TBL] [Abstract][Full Text] [Related]
11. Pathological mechanisms in experimental autoimmune myasthenia gravis. II. Passive transfer of experimental autoimmune myasthenia gravis in rats with anti-acetylcholine recepotr antibodies. Lindstrom JM; Engel AG; Seybold ME; Lennon VA; Lambert EH J Exp Med; 1976 Sep; 144(3):739-53. PubMed ID: 182897 [TBL] [Abstract][Full Text] [Related]
12. Novel complement inhibitor limits severity of experimentally myasthenia gravis. Soltys J; Kusner LL; Young A; Richmonds C; Hatala D; Gong B; Shanmugavel V; Kaminski HJ Ann Neurol; 2009 Jan; 65(1):67-75. PubMed ID: 19194881 [TBL] [Abstract][Full Text] [Related]
13. Extraocular muscle susceptibility to myasthenia gravis: unique immunological environment? Soltys J; Gong B; Kaminski HJ; Zhou Y; Kusner LL Ann N Y Acad Sci; 2008; 1132():220-4. PubMed ID: 18567871 [TBL] [Abstract][Full Text] [Related]
14. Silencing of Dok-7 in Adult Rat Muscle Increases Susceptibility to Passive Transfer Myasthenia Gravis. Gomez AM; Stevens JA; Mané-Damas M; Molenaar P; Duimel H; Verheyen F; Cossins J; Beeson D; De Baets MH; Losen M; Martinez-Martinez P Am J Pathol; 2016 Oct; 186(10):2559-68. PubMed ID: 27658713 [TBL] [Abstract][Full Text] [Related]
15. Effect of Grilled Nux Vomica on Differential RNA Expression Profile of Gastrocnemius Muscle and Toll‑Like Receptor 4 (TLR-4)/Nuclear Factor kappa B (NF-κB) Signaling in Experimental Autoimmune Myasthenia Gravis Rats. Jiang XH; Chen Y; Ding YY; Qiu H; Zhou DY; Qiu CL Med Sci Monit; 2020 Feb; 26():e919150. PubMed ID: 32052794 [TBL] [Abstract][Full Text] [Related]
17. Specific immunotherapy of experimental myasthenia gravis by a novel mechanism. Luo J; Kuryatov A; Lindstrom JM Ann Neurol; 2010 Apr; 67(4):441-51. PubMed ID: 20437579 [TBL] [Abstract][Full Text] [Related]
18. Pathological mechanisms in experimental autoimmune myasthenia gravis. I. Immunogenicity of syngeneic muscle acetylcholine receptor and quantitative extraction of receptor and antibody-receptor complexes from muscles of rats with experimental automimmune myasthenia gravis. Lindstrom JM; Einarson BL; Lennon VA; Seybold ME J Exp Med; 1976 Sep; 144(3):726-38. PubMed ID: 182896 [TBL] [Abstract][Full Text] [Related]