These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 24917488)
1. Combining physiological threshold knowledge to species distribution models is key to improving forecasts of the future niche for macroalgae. Martínez B; Arenas F; Trilla A; Viejo RM; Carreño F Glob Chang Biol; 2015 Apr; 21(4):1422-33. PubMed ID: 24917488 [TBL] [Abstract][Full Text] [Related]
2. The impact of climate change on the geographical distribution of habitat-forming macroalgae in the Rías Baixas. Des M; Martínez B; deCastro M; Viejo RM; Sousa MC; Gómez-Gesteira M Mar Environ Res; 2020 Oct; 161():105074. PubMed ID: 33070933 [TBL] [Abstract][Full Text] [Related]
3. Physiological responses to variations in grazing and light conditions in native and invasive fucoids. Olabarria C; Arenas F; Fernández Á; Troncoso JS; Martínez B Mar Environ Res; 2018 Aug; 139():151-161. PubMed ID: 29793731 [TBL] [Abstract][Full Text] [Related]
4. Incorporating eco-evolutionary information into species distribution models provides comprehensive predictions of species range shifts under climate change. Lu WX; Wang ZZ; Hu XY; Rao GY Sci Total Environ; 2024 Feb; 912():169501. PubMed ID: 38145682 [TBL] [Abstract][Full Text] [Related]
5. Changes in the distribution of intertidal macroalgae along a longitudinal gradient in the northern coast of Spain. Ramos E; Guinda X; Puente A; de la Hoz CF; Juanes JA Mar Environ Res; 2020 May; 157():104930. PubMed ID: 32275512 [TBL] [Abstract][Full Text] [Related]
6. Integrating mechanistic and correlative niche models to unravel range-limiting processes in a temperate amphibian. Enriquez-Urzelai U; Kearney MR; Nicieza AG; Tingley R Glob Chang Biol; 2019 Aug; 25(8):2633-2647. PubMed ID: 31050846 [TBL] [Abstract][Full Text] [Related]
7. Mechanistic niche modelling: combining physiological and spatial data to predict species' ranges. Kearney M; Porter W Ecol Lett; 2009 Apr; 12(4):334-50. PubMed ID: 19292794 [TBL] [Abstract][Full Text] [Related]
8. A physiological trait-based approach to predicting the responses of species to experimental climate warming. Diamond SE; Nichols LM; McCoy N; Hirsch C; Pelini SL; Sanders NJ; Ellison AM; Gotelli NJ; Dunn RR Ecology; 2012 Nov; 93(11):2305-12. PubMed ID: 23236901 [TBL] [Abstract][Full Text] [Related]
9. Heatwaves during low tide are critical for the physiological performance of intertidal macroalgae under global warming scenarios. Román M; Román S; Vázquez E; Troncoso J; Olabarria C Sci Rep; 2020 Dec; 10(1):21408. PubMed ID: 33293562 [TBL] [Abstract][Full Text] [Related]
10. Species distribution models may misdirect assisted migration: insights from the introduction of Douglas-fir to Europe. Boiffin J; Badeau V; Bréda N Ecol Appl; 2017 Mar; 27(2):446-457. PubMed ID: 28207174 [TBL] [Abstract][Full Text] [Related]
11. The Combined Use of Correlative and Mechanistic Species Distribution Models Benefits Low Conservation Status Species. Rougier T; Lassalle G; Drouineau H; Dumoulin N; Faure T; Deffuant G; Rochard E; Lambert P PLoS One; 2015; 10(10):e0139194. PubMed ID: 26426280 [TBL] [Abstract][Full Text] [Related]
12. Ocean currents and herbivory drive macroalgae-to-coral community shift under climate warming. Kumagai NH; García Molinos J; Yamano H; Takao S; Fujii M; Yamanaka Y Proc Natl Acad Sci U S A; 2018 Sep; 115(36):8990-8995. PubMed ID: 30126981 [TBL] [Abstract][Full Text] [Related]
13. Consensus forecasting of species distributions: the effects of niche model performance and niche properties. Zhang L; Liu S; Sun P; Wang T; Wang G; Zhang X; Wang L PLoS One; 2015; 10(3):e0120056. PubMed ID: 25786217 [TBL] [Abstract][Full Text] [Related]
14. Habitat availability and gene flow influence diverging local population trajectories under scenarios of climate change: a place-based approach. Schwalm D; Epps CW; Rodhouse TJ; Monahan WB; Castillo JA; Ray C; Jeffress MR Glob Chang Biol; 2016 Apr; 22(4):1572-84. PubMed ID: 26667878 [TBL] [Abstract][Full Text] [Related]
15. Comparing and synthesizing quantitative distribution models and qualitative vulnerability assessments to project marine species distributions under climate change. Allyn AJ; Alexander MA; Franklin BS; Massiot-Granier F; Pershing AJ; Scott JD; Mills KE PLoS One; 2020; 15(4):e0231595. PubMed ID: 32298349 [TBL] [Abstract][Full Text] [Related]
16. Dispersal and extrapolation on the accuracy of temporal predictions from distribution models for the Darwin's frog. Uribe-Rivera DE; Soto-Azat C; Valenzuela-Sánchez A; Bizama G; Simonetti JA; Pliscoff P Ecol Appl; 2017 Jul; 27(5):1633-1645. PubMed ID: 28397328 [TBL] [Abstract][Full Text] [Related]
17. Temporal variability of sea surface temperature affects marine macrophytes range retractions as well as gradual warming. Chefaoui RM; Martínez BD; Viejo RM Sci Rep; 2024 Jun; 14(1):14206. PubMed ID: 38902310 [TBL] [Abstract][Full Text] [Related]
18. Climatic associations of British species distributions show good transferability in time but low predictive accuracy for range change. Rapacciuolo G; Roy DB; Gillings S; Fox R; Walker K; Purvis A PLoS One; 2012; 7(7):e40212. PubMed ID: 22792243 [TBL] [Abstract][Full Text] [Related]
19. Major shifts at the range edge of marine forests: the combined effects of climate changes and limited dispersal. Assis J; Berecibar E; Claro B; Alberto F; Reed D; Raimondi P; Serrão EA Sci Rep; 2017 Mar; 7():44348. PubMed ID: 28276501 [TBL] [Abstract][Full Text] [Related]
20. Projected loss of brown macroalgae and seagrasses with global environmental change. Manca F; Benedetti-Cecchi L; Bradshaw CJA; Cabeza M; Gustafsson C; Norkko AM; Roslin TV; Thomas DN; White L; Strona G Nat Commun; 2024 Jun; 15(1):5344. PubMed ID: 38914573 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]