These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 24917488)
21. Realized niche shift during a global biological invasion. Tingley R; Vallinoto M; Sequeira F; Kearney MR Proc Natl Acad Sci U S A; 2014 Jul; 111(28):10233-8. PubMed ID: 24982155 [TBL] [Abstract][Full Text] [Related]
22. Biological invasions reveal how niche change affects the transferability of species distribution models. Liu C; Wolter C; Courchamp F; Roura-Pascual N; Jeschke JM Ecology; 2022 Aug; 103(8):e3719. PubMed ID: 35388469 [TBL] [Abstract][Full Text] [Related]
23. Does scale matter? A systematic review of incorporating biological realism when predicting changes in species distributions. Record S; Strecker A; Tuanmu MN; Beaudrot L; Zarnetske P; Belmaker J; Gerstner B PLoS One; 2018; 13(4):e0194650. PubMed ID: 29652936 [TBL] [Abstract][Full Text] [Related]
24. Climatic niche shifts are common in introduced plants. Atwater DZ; Ervine C; Barney JN Nat Ecol Evol; 2018 Jan; 2(1):34-43. PubMed ID: 29203919 [TBL] [Abstract][Full Text] [Related]
25. Disparity in elevational shifts of European trees in response to recent climate warming. Rabasa SG; Granda E; Benavides R; Kunstler G; Espelta JM; Ogaya R; Peñuelas J; Scherer-Lorenzen M; Gil W; Grodzki W; Ambrozy S; Bergh J; Hódar JA; Zamora R; Valladares F Glob Chang Biol; 2013 Aug; 19(8):2490-9. PubMed ID: 23572443 [TBL] [Abstract][Full Text] [Related]
26. Integrating functional traits into correlative species distribution models to investigate the vulnerability of marine human activities to climate change. Bosch-Belmar M; Giommi C; Milisenda G; Abbruzzo A; Sarà G Sci Total Environ; 2021 Dec; 799():149351. PubMed ID: 34371417 [TBL] [Abstract][Full Text] [Related]
27. Using physiology to predict the responses of ants to climatic warming. Diamond SE; Penick CA; Pelini SL; Ellison AM; Gotelli NJ; Sanders NJ; Dunn RR Integr Comp Biol; 2013 Dec; 53(6):965-74. PubMed ID: 23892370 [TBL] [Abstract][Full Text] [Related]
29. Genes Left Behind: Climate Change Threatens Cryptic Genetic Diversity in the Canopy-Forming Seaweed Bifurcaria bifurcata. Neiva J; Assis J; Coelho NC; Fernandes F; Pearson GA; Serrão EA PLoS One; 2015; 10(7):e0131530. PubMed ID: 26177545 [TBL] [Abstract][Full Text] [Related]
30. Adaptation to climate change through seasonal migration revealed by climatic versus demographic niche models. Carbeck K; Wang T; Reid JM; Arcese P Glob Chang Biol; 2022 Jul; 28(14):4260-4275. PubMed ID: 35366358 [TBL] [Abstract][Full Text] [Related]
31. Integrating experimental and distribution data to predict future species patterns. Kotta J; Vanhatalo J; Jänes H; Orav-Kotta H; Rugiu L; Jormalainen V; Bobsien I; Viitasalo M; Virtanen E; Sandman AN; Isaeus M; Leidenberger S; Jonsson PR; Johannesson K Sci Rep; 2019 Feb; 9(1):1821. PubMed ID: 30755688 [TBL] [Abstract][Full Text] [Related]
32. Unpacking the mechanisms captured by a correlative species distribution model to improve predictions of climate refugia. Briscoe NJ; Kearney MR; Taylor CA; Wintle BA Glob Chang Biol; 2016 Jul; 22(7):2425-39. PubMed ID: 26960136 [TBL] [Abstract][Full Text] [Related]
33. The effects of intraspecific variation on forecasts of species range shifts under climate change. Song WH; Li JJ Sci Total Environ; 2023 Jan; 857(Pt 2):159513. PubMed ID: 36257416 [TBL] [Abstract][Full Text] [Related]
34. Correlative climatic niche models predict real and virtual species distributions equally well. Journé V; Barnagaud JY; Bernard C; Crochet PA; Morin X Ecology; 2020 Jan; 101(1):e02912. PubMed ID: 31605622 [TBL] [Abstract][Full Text] [Related]
35. Thermal habitat index of many northwest Atlantic temperate species stays neutral under warming projected for 2030 but changes radically by 2060. Shackell NL; Ricard D; Stortini C PLoS One; 2014; 9(3):e90662. PubMed ID: 24599187 [TBL] [Abstract][Full Text] [Related]
36. Arctic marine forest distribution models showcase potentially severe habitat losses for cryophilic species under climate change. Bringloe TT; Wilkinson DP; Goldsmit J; Savoie AM; Filbee-Dexter K; Macgregor KA; Howland KL; McKindsey CW; Verbruggen H Glob Chang Biol; 2022 Jun; 28(11):3711-3727. PubMed ID: 35212084 [TBL] [Abstract][Full Text] [Related]
37. The fate of the Arctic seaweed Fucus distichus under climate change: an ecological niche modeling approach. Jueterbock A; Smolina I; Coyer JA; Hoarau G Ecol Evol; 2016 Mar; 6(6):1712-24. PubMed ID: 27087933 [TBL] [Abstract][Full Text] [Related]
38. How complex should models be? Comparing correlative and mechanistic range dynamics models. Fordham DA; Bertelsmeier C; Brook BW; Early R; Neto D; Brown SC; Ollier S; Araújo MB Glob Chang Biol; 2018 Mar; 24(3):1357-1370. PubMed ID: 29152817 [TBL] [Abstract][Full Text] [Related]
39. Incorporating spatial autocorrelation into species distribution models alters forecasts of climate-mediated range shifts. Crase B; Liedloff A; Vesk PA; Fukuda Y; Wintle BA Glob Chang Biol; 2014 Aug; 20(8):2566-79. PubMed ID: 24845950 [TBL] [Abstract][Full Text] [Related]
40. Benchmarking novel approaches for modelling species range dynamics. Zurell D; Thuiller W; Pagel J; Cabral JS; Münkemüller T; Gravel D; Dullinger S; Normand S; Schiffers KH; Moore KA; Zimmermann NE Glob Chang Biol; 2016 Aug; 22(8):2651-64. PubMed ID: 26872305 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]