These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 24917488)
41. Incorporating abundance information and guiding variable selection for climate-based ensemble forecasting of species' distributional shifts. Tanner EP; Papeş M; Elmore RD; Fuhlendorf SD; Davis CA PLoS One; 2017; 12(9):e0184316. PubMed ID: 28886075 [TBL] [Abstract][Full Text] [Related]
42. Improving area of occupancy estimates for parapatric species using distribution models and support vector machines. Kass JM; Meenan SI; Tinoco N; Burneo SF; Anderson RP Ecol Appl; 2021 Jan; 31(1):e02228. PubMed ID: 32970879 [TBL] [Abstract][Full Text] [Related]
43. Intraspecific genetic variation matters when predicting seagrass distribution under climate change. Hu ZM; Zhang QS; Zhang J; Kass JM; Mammola S; Fresia P; Draisma SGA; Assis J; Jueterbock A; Yokota M; Zhang Z Mol Ecol; 2021 Aug; 30(15):3840-3855. PubMed ID: 34022079 [TBL] [Abstract][Full Text] [Related]
44. Integrating mechanistic and empirical model projections to assess climate impacts on tree species distributions in northwestern North America. Case MJ; Lawler JJ Glob Chang Biol; 2017 May; 23(5):2005-2015. PubMed ID: 27859937 [TBL] [Abstract][Full Text] [Related]
45. Climatic niche conservatism and biogeographical non-equilibrium in Eschscholzia californica (Papaveraceae), an invasive plant in the Chilean Mediterranean region. Peña-Gómez FT; Guerrero PC; Bizama G; Duarte M; Bustamante RO PLoS One; 2014; 9(8):e105025. PubMed ID: 25137175 [TBL] [Abstract][Full Text] [Related]
46. Climate change induced range shifts in seaweeds distributions in Europe. de la Hoz CF; Ramos E; Puente A; Juanes JA Mar Environ Res; 2019 Jun; 148():1-11. PubMed ID: 31075527 [TBL] [Abstract][Full Text] [Related]
47. Topo-climatic microrefugia explain the persistence of a rare endemic plant in the Alps during the last 21 millennia. Patsiou TS; Conti E; Zimmermann NE; Theodoridis S; Randin CF Glob Chang Biol; 2014 Jul; 20(7):2286-300. PubMed ID: 24375923 [TBL] [Abstract][Full Text] [Related]
48. A synthesis of transplant experiments and ecological niche models suggests that range limits are often niche limits. Lee-Yaw JA; Kharouba HM; Bontrager M; Mahony C; Csergő AM; Noreen AM; Li Q; Schuster R; Angert AL Ecol Lett; 2016 Jun; 19(6):710-22. PubMed ID: 27111656 [TBL] [Abstract][Full Text] [Related]
49. Predicting the genetic consequences of future climate change: The power of coupling spatial demography, the coalescent, and historical landscape changes. Brown JL; Weber JJ; Alvarado-Serrano DF; Hickerson MJ; Franks SJ; Carnaval AC Am J Bot; 2016 Jan; 103(1):153-63. PubMed ID: 26747843 [TBL] [Abstract][Full Text] [Related]
50. Ecophysiological models for global invaders: Is Europe a big playground for the African clawed frog? Ginal P; Mokhatla M; Kruger N; Secondi J; Herrel A; Measey J; Rödder D J Exp Zool A Ecol Integr Physiol; 2021 Jan; 335(1):158-172. PubMed ID: 33264517 [TBL] [Abstract][Full Text] [Related]
51. Plant Distribution Data Show Broader Climatic Limits than Expert-Based Climatic Tolerance Estimates. Curtis CA; Bradley BA PLoS One; 2016; 11(11):e0166407. PubMed ID: 27870859 [TBL] [Abstract][Full Text] [Related]
52. Comparing niche- and process-based models to reduce prediction uncertainty in species range shifts under climate change. Morin X; Thuiller W Ecology; 2009 May; 90(5):1301-13. PubMed ID: 19537550 [TBL] [Abstract][Full Text] [Related]
53. Incorporating population-level variation in thermal performance into predictions of geographic range shifts. Angert AL; Sheth SN; Paul JR Integr Comp Biol; 2011 Nov; 51(5):733-50. PubMed ID: 21705795 [TBL] [Abstract][Full Text] [Related]
54. Integrating laboratory experiments and biogeographic modelling approaches to understand sensitivity to ocean warming in rare and common marine annelids. Massamba-N'Siala G; Reygondeau G; Simonini R; Cheung WWL; Prevedelli D; Calosi P Oecologia; 2022 Jun; 199(2):453-470. PubMed ID: 35689680 [TBL] [Abstract][Full Text] [Related]
55. Water beetle tolerance to salinity and anionic composition and its relationship to habitat occupancy. Céspedes V; Pallarés S; Arribas P; Millán A; Velasco J J Insect Physiol; 2013 Oct; 59(10):1076-84. PubMed ID: 23973816 [TBL] [Abstract][Full Text] [Related]
56. Spatial Autocorrelation Can Generate Stronger Correlations between Range Size and Climatic Niches Than the Biological Signal - A Demonstration Using Bird and Mammal Range Maps. Boucher-Lalonde V; Currie DJ PLoS One; 2016; 11(11):e0166243. PubMed ID: 27855201 [TBL] [Abstract][Full Text] [Related]
57. Interaction strength between different grazers and macroalgae mediated by ocean acidification over warming gradients. Sampaio E; Rodil IF; Vaz-Pinto F; Fernández A; Arenas F Mar Environ Res; 2017 Apr; 125():25-33. PubMed ID: 28088495 [TBL] [Abstract][Full Text] [Related]
58. Improving species distribution forecasts by measuring and communicating uncertainty: An invasive species case study. Thomas SM; Verhoeven MR; Walsh JR; Larkin DJ; Hansen GJA Ecology; 2024 May; 105(5):e4297. PubMed ID: 38613235 [TBL] [Abstract][Full Text] [Related]
59. Integrating metabolic performance, thermal tolerance, and plasticity enables for more accurate predictions on species vulnerability to acute and chronic effects of global warming. Magozzi S; Calosi P Glob Chang Biol; 2015 Jan; 21(1):181-94. PubMed ID: 25155644 [TBL] [Abstract][Full Text] [Related]
60. Distinct interspecific and intraspecific vulnerability of coastal species to global change. Nielsen ES; Henriques R; Beger M; von der Heyden S Glob Chang Biol; 2021 Aug; 27(15):3415-3431. PubMed ID: 33904200 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]