BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 24917680)

  • 1. RNA polymerase III accurately initiates transcription from RNA polymerase II promoters in vitro.
    Duttke SH
    J Biol Chem; 2014 Jul; 289(29):20396-404. PubMed ID: 24917680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Specific binding sites for a pol III transcriptional repressor and pol II transcription factor YY1 within the internucleosomal spacer region in primate Alu repetitive elements.
    Humphrey GW; Englander EW; Howard BH
    Gene Expr; 1996; 6(3):151-68. PubMed ID: 9041122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Survey and summary: transcription by RNA polymerases I and III.
    Paule MR; White RJ
    Nucleic Acids Res; 2000 Mar; 28(6):1283-98. PubMed ID: 10684922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural insights into RNA polymerase III-mediated transcription termination through trapping poly-deoxythymidine.
    Hou H; Li Y; Wang M; Liu A; Yu Z; Chen K; Zhao D; Xu Y
    Nat Commun; 2021 Oct; 12(1):6135. PubMed ID: 34675218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleotide Resolution Comparison of Transcription of Human Cytomegalovirus and Host Genomes Reveals Universal Use of RNA Polymerase II Elongation Control Driven by Dissimilar Core Promoter Elements.
    Parida M; Nilson KA; Li M; Ball CB; Fuchs HA; Lawson CK; Luse DS; Meier JL; Price DH
    mBio; 2019 Feb; 10(1):. PubMed ID: 30755505
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcription termination by the eukaryotic RNA polymerase III.
    Arimbasseri AG; Rijal K; Maraia RJ
    Biochim Biophys Acta; 2013; 1829(3-4):318-30. PubMed ID: 23099421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Eukaryotic core promoters and the functional basis of transcription initiation.
    Haberle V; Stark A
    Nat Rev Mol Cell Biol; 2018 Oct; 19(10):621-637. PubMed ID: 29946135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Universal promoter scanning by Pol II during transcription initiation in Saccharomyces cerevisiae.
    Qiu C; Jin H; Vvedenskaya I; Llenas JA; Zhao T; Malik I; Visbisky AM; Schwartz SL; Cui P; Čabart P; Han KH; Lai WKM; Metz RP; Johnson CD; Sze SH; Pugh BF; Nickels BE; Kaplan CD
    Genome Biol; 2020 Jun; 21(1):132. PubMed ID: 32487207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptional activation by bidirectional RNA polymerase II elongation over a silent promoter.
    Leupin O; Attanasio C; Marguerat S; Tapernoux M; Antonarakis SE; Conrad B
    EMBO Rep; 2005 Oct; 6(10):956-60. PubMed ID: 16113646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcription elongation mechanisms of RNA polymerases I, II, and III and their therapeutic implications.
    Jacobs RQ; Schneider DA
    J Biol Chem; 2024 Mar; 300(3):105737. PubMed ID: 38336292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinctive physical properties of DNA shared by RNA polymerase II gene promoters and 5'-flanking regions of tRNA genes.
    Uemura K; Ohyama T
    J Biochem; 2024 Mar; 175(4):395-404. PubMed ID: 38102732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence of RNA polymerase III recruitment and transcription at protein-coding gene promoters.
    Rajendra KC; Cheng R; Zhou S; Lizarazo S; Smith D; Van Bortle K
    bioRxiv; 2024 Jun; ():. PubMed ID: 38895345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TSSPlant: a new tool for prediction of plant Pol II promoters.
    Shahmuradov IA; Umarov RK; Solovyev VV
    Nucleic Acids Res; 2017 May; 45(8):e65. PubMed ID: 28082394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. BRD2 interconnects with BRD3 to facilitate Pol II transcription initiation and elongation to prime promoters for cell differentiation.
    Wang C; Xu Q; Zhang X; Day DS; Abraham BJ; Lun K; Chen L; Huang J; Ji X
    Cell Mol Life Sci; 2022 Jun; 79(6):338. PubMed ID: 35665862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two isoforms of human RNA polymerase III with specific functions in cell growth and transformation.
    Haurie V; Durrieu-Gaillard S; Dumay-Odelot H; Da Silva D; Rey C; Prochazkova M; Roeder RG; Besser D; Teichmann M
    Proc Natl Acad Sci U S A; 2010 Mar; 107(9):4176-81. PubMed ID: 20154270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of human RNA polymerase III.
    Ramsay EP; Abascal-Palacios G; Daiß JL; King H; Gouge J; Pilsl M; Beuron F; Morris E; Gunkel P; Engel C; Vannini A
    Nat Commun; 2020 Dec; 11(1):6409. PubMed ID: 33335104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative analysis of transcription start site selection reveals control by DNA sequence, RNA polymerase II activity and NTP levels.
    Zhu Y; Vvedenskaya IO; Sze SH; Nickels BE; Kaplan CD
    Nat Struct Mol Biol; 2024 Jan; 31(1):190-202. PubMed ID: 38177677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of the p53/RNA polymerase II assembly.
    Liou SH; Singh SK; Singer RH; Coleman RA; Liu WL
    Commun Biol; 2021 Mar; 4(1):397. PubMed ID: 33767390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural visualization of transcription initiation in action.
    Chen X; Liu W; Wang Q; Wang X; Ren Y; Qu X; Li W; Xu Y
    Science; 2023 Dec; 382(6677):eadi5120. PubMed ID: 38127763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Never a dull enzyme, RNA polymerase II.
    Huang J; Ji X
    Transcription; 2023 Nov; 14(1-2):49-67. PubMed ID: 37132022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.