These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 24917700)

  • 1. Topographical control of cell-cell interaction in C6 glioma by nanodot arrays.
    Lee CH; Cheng YW; Huang GS
    Nanoscale Res Lett; 2014; 9(1):250. PubMed ID: 24917700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of growth and inflammatory response of macrophages and foam cells with nanotopography.
    Mohiuddin M; Pan HA; Hung YC; Huang GS
    Nanoscale Res Lett; 2012 Jul; 7(1):394. PubMed ID: 22799434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Topographic control of the growth and function of cardiomyoblast H9c2 cells using nanodot arrays.
    Pan HA; Hung YC; Sui YP; Huang GS
    Biomaterials; 2012 Jan; 33(1):20-8. PubMed ID: 21982297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Nanodot Array Modulates Cell Adhesion and Induces an Apoptosis-Like Abnormality in NIH-3T3 Cells.
    Pan HA; Hung YC; Su CW; Tai SM; Chen CH; Ko FH; Steve Huang G
    Nanoscale Res Lett; 2009 May; 4(8):903-912. PubMed ID: 20596320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanosurface design of dental implants for improved cell growth and function.
    Pan HA; Hung YC; Chiou JC; Tai SM; Chen HH; Huang GS
    Nanotechnology; 2012 Aug; 23(33):335703. PubMed ID: 22863781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphology and magnetic properties of Fe3O 4 nanodot arrays using template-assisted epitaxial growth.
    Guan XF; Chen D; Quan ZY; Jiang FX; Deng CH; Gehring GA; Xu XH
    Nanoscale Res Lett; 2015 Dec; 10(1):2419. PubMed ID: 26055471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temporal Control of Osteoblast Cell Growth and Behavior Dictated by Nanotopography and Shear Stress.
    Dhawan U; Pan HA; Chu YH; Huang GS; Chen PC; Chen WL
    IEEE Trans Nanobioscience; 2016 Oct; 15(7):704-712. PubMed ID: 28029616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Topological control of nitric oxide secretion by tantalum oxide nanodot arrays.
    Dhawan U; Lee CH; Huang CC; Chu YH; Huang GS; Lin YR; Chen WL
    J Nanobiotechnology; 2015 Nov; 13():79. PubMed ID: 26553043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A nanodevice for rapid modulation of proliferation, apoptosis, invasive ability, and cytoskeletal reorganization in cultured cells.
    Hung YC; Pan HA; Tai SM; Huang GS
    Lab Chip; 2010 May; 10(9):1189-98. PubMed ID: 20390139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alterations in the synthesis of insulin-like growth factor binding proteins and insulin-like growth factors in rat C6 glioma cells transfected with a gap junction connexin43 cDNA.
    Bradshaw SL; Naus CC; Zhu D; Kidder GM; D'Ercole AJ; Han VK
    Regul Pept; 1993 Oct; 48(1-2):99-112. PubMed ID: 7505471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial Control of Cell-Nanosurface Interactions by Tantalum Oxide Nanodots for Improved Implant Geometry.
    Dhawan U; Pan HA; Lee CH; Chu YH; Huang GS; Lin YR; Chen WL
    PLoS One; 2016; 11(6):e0158425. PubMed ID: 27362432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased invasive capacity of connexin43-overexpressing malignant glioma cells.
    Zhang W; Nwagwu C; Le DM; Yong VW; Song H; Couldwell WT
    J Neurosurg; 2003 Dec; 99(6):1039-46. PubMed ID: 14705732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Astrocytes promote glioma invasion via the gap junction protein connexin43.
    Sin WC; Aftab Q; Bechberger JF; Leung JH; Chen H; Naus CC
    Oncogene; 2016 Mar; 35(12):1504-16. PubMed ID: 26165844
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct gap junction communication between malignant glioma cells and astrocytes.
    Zhang W; Couldwell WT; Simard MF; Song H; Lin JH; Nedergaard M
    Cancer Res; 1999 Apr; 59(8):1994-2003. PubMed ID: 10213512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estradiol Receptors Regulate Differential Connexin 43 Expression in F98 and C6 Glioma Cell Lines.
    Moinfar Z; Dambach H; Schoenebeck B; Förster E; Prochnow N; Faustmann PM
    PLoS One; 2016; 11(2):e0150007. PubMed ID: 26919293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dose-dependent differential upregulation of CCN1/Cyr61 and CCN3/NOV by the gap junction protein Connexin43 in glioma cells.
    Sin WC; Bechberger JF; Rushlow WJ; Naus CC
    J Cell Biochem; 2008 Apr; 103(6):1772-82. PubMed ID: 18004727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CCN3 (NOV) interacts with connexin43 in C6 glioma cells: possible mechanism of connexin-mediated growth suppression.
    Fu CT; Bechberger JF; Ozog MA; Perbal B; Naus CC
    J Biol Chem; 2004 Aug; 279(35):36943-50. PubMed ID: 15213231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Communication between malignant glioma cells and vascular endothelial cells through gap junctions.
    Zhang W; DeMattia JA; Song H; Couldwell WT
    J Neurosurg; 2003 Apr; 98(4):846-53. PubMed ID: 12691411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmon-enhanced photoelectrochemical water splitting with size-controllable gold nanodot arrays.
    Kim HJ; Lee SH; Upadhye AA; Ro I; Tejedor-Tejedor MI; Anderson MA; Kim WB; Huber GW
    ACS Nano; 2014 Oct; 8(10):10756-65. PubMed ID: 25268767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The carboxy-terminal tail of connexin43 gap junction protein is sufficient to mediate cytoskeleton changes in human glioma cells.
    Crespin S; Bechberger J; Mesnil M; Naus CC; Sin WC
    J Cell Biochem; 2010 Jun; 110(3):589-97. PubMed ID: 20512920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.