These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 24917856)

  • 1. Lignocellulose-responsive bacteria in a southern California salt marsh identified by stable isotope probing.
    Darjany LE; Whitcraft CR; Dillon JG
    Front Microbiol; 2014; 5():263. PubMed ID: 24917856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanistic strategies of microbial communities regulating lignocellulose deconstruction in a UK salt marsh.
    Leadbeater DR; Oates NC; Bennett JP; Li Y; Dowle AA; Taylor JD; Alponti JS; Setchfield AT; Alessi AM; Helgason T; McQueen-Mason SJ; Bruce NC
    Microbiome; 2021 Feb; 9(1):48. PubMed ID: 33597033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estuarine Sediment Microbiomes from a Chronosequence of Restored Urban Salt Marshes.
    Morris N; Alldred M; Zarnoch C; Alter SE
    Microb Ecol; 2023 Apr; 85(3):916-930. PubMed ID: 36826588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trophic structure and origin of resources of soil macrofauna in the salt marsh of the Wadden Sea: a stable isotope (
    Rinke M; Bendisch PM; Maraun M; Scheu S
    BMC Ecol Evol; 2022 Jun; 22(1):85. PubMed ID: 35761170
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitrate addition stimulates microbial decomposition of organic matter in salt marsh sediments.
    Bulseco AN; Giblin AE; Tucker J; Murphy AE; Sanderman J; Hiller-Bittrolff K; Bowen JL
    Glob Chang Biol; 2019 Oct; 25(10):3224-3241. PubMed ID: 31317634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatio-temporal patterns in stable isotope composition of a benthic intertidal food web reveal limited influence from salt marsh vegetation and green tide.
    Sturbois A; Riera P; Desroy N; Brébant T; Carpentier A; Ponsero A; Schaal G
    Mar Environ Res; 2022 Mar; 175():105572. PubMed ID: 35134641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ecological structure and function in a restored versus natural salt marsh.
    Rezek RJ; Lebreton B; Sterba-Boatwright B; Beseres Pollack J
    PLoS One; 2017; 12(12):e0189871. PubMed ID: 29261795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Linking Uncultivated Microbial Populations and Benthic Carbon Turnover by Using Quantitative Stable Isotope Probing.
    Coskun ÖK; Pichler M; Vargas S; Gilder S; Orsi WD
    Appl Environ Microbiol; 2018 Sep; 84(18):. PubMed ID: 29980553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nutrient Enrichment Alters Salt Marsh Fungal Communities and Promotes Putative Fungal Denitrifiers.
    Kearns PJ; Bulseco-McKim AN; Hoyt H; Angell JH; Bowen JL
    Microb Ecol; 2019 Feb; 77(2):358-369. PubMed ID: 29978357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Food web analysis of southern California coastal wetlands using multiple stable isotopes.
    Kwak TJ; Zedler JB
    Oecologia; 1997 Apr; 110(2):262-277. PubMed ID: 28307434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The structure of salt marsh soil mesofauna food webs - The prevalence of disturbance.
    Haynert K; Kiggen M; Klarner B; Maraun M; Scheu S
    PLoS One; 2017; 12(12):e0189645. PubMed ID: 29240806
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon and nitrogen composition and stable isotope as potential indicators of source and fate of organic matter in the salt marsh of the Changjiang Estuary, China.
    Zhou J; Wu Y; Zhang J; Kang Q; Liu Z
    Chemosphere; 2006 Oct; 65(2):310-7. PubMed ID: 16564069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Seasonal dynamics and changing sea level as determinants of the community and trophic structure of oribatid mites in a salt marsh of the Wadden Sea.
    Winter M; Haynert K; Scheu S; Maraun M
    PLoS One; 2018; 13(11):e0207141. PubMed ID: 30408121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diversity at single nucleotide to pangenome scales among sulfur cycling bacteria in salt marshes.
    Pérez Castro S; Peredo EL; Mason OU; Vineis J; Bowen JL; Mortazavi B; Ganesh A; Ruff SE; Paul BG; Giblin AE; Cardon ZG
    Appl Environ Microbiol; 2023 Nov; 89(11):e0098823. PubMed ID: 37882526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crenarchaeal heterotrophy in salt marsh sediments.
    Seyler LM; McGuinness LM; Kerkhof LJ
    ISME J; 2014 Jul; 8(7):1534-43. PubMed ID: 24553469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methylococcaceae are the dominant active aerobic methanotrophs in a Chinese tidal marsh.
    Deng Y; Gui Q; Dumont M; Han C; Deng H; Yun J; Zhong W
    Environ Sci Pollut Res Int; 2019 Jan; 26(1):636-646. PubMed ID: 30411293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Salt Marsh Bacterial Communities before and after the Deepwater Horizon Oil Spill.
    Engel AS; Liu C; Paterson AT; Anderson LC; Turner RE; Overton EB
    Appl Environ Microbiol; 2017 Oct; 83(20):. PubMed ID: 28778895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High site fidelity and low site connectivity in temperate salt marsh fish populations: a stable isotope approach.
    Green BC; Smith DJ; Grey J; Underwood GJ
    Oecologia; 2012 Jan; 168(1):245-55. PubMed ID: 21786154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Salt marsh sediment bacteria: their distribution and response to external nutrient inputs.
    Bowen JL; Crump BC; Deegan LA; Hobbie JE
    ISME J; 2009 Aug; 3(8):924-34. PubMed ID: 19421233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Deposition and burial of organic carbon in coastal salt marsh: research progress].
    Cao L; Song JM; Li XG; Yuan HM; Li N; Duan LQ
    Ying Yong Sheng Tai Xue Bao; 2013 Jul; 24(7):2040-8. PubMed ID: 24175538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.