These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 24918252)
1. Reversible symmetric nonexpansive convolution: an effective image boundary processing for M-channel lifting-based linear-phase filter banks. Suzuki T; Ikehara M IEEE Trans Image Process; 2014 Jun; 23(6):2744-9. PubMed ID: 24918252 [TBL] [Abstract][Full Text] [Related]
2. 2D Non-Separable Block-Lifting Structure and Its Application to M-Channel Perfect Reconstruction Filter Banks for Lossy-to-Lossless Image Coding. Suzuki T; Kudo H IEEE Trans Image Process; 2015 Dec; 24(12):4943-51. PubMed ID: 26316127 [TBL] [Abstract][Full Text] [Related]
3. Generalized block-lifting factorization of M-channel biorthogonal filter banks for lossy-to-lossless image coding. Suzuki T; Ikehara M; Nguyen TQ IEEE Trans Image Process; 2012 Jul; 21(7):3220-8. PubMed ID: 22434801 [TBL] [Abstract][Full Text] [Related]
4. Generalized symmetric extension for size-limited multirate filter banks. Bamberger RH; Eddins SL; Nuri V IEEE Trans Image Process; 1994; 3(1):82-7. PubMed ID: 18291911 [TBL] [Abstract][Full Text] [Related]
5. Integer DCT based on direct-lifting of DCT-IDCT for lossless-to-lossy image coding. Suzuki T; Ikehara M IEEE Trans Image Process; 2010 Nov; 19(11):2958-65. PubMed ID: 20519151 [TBL] [Abstract][Full Text] [Related]
6. Deep Lossy Plus Residual Coding for Lossless and Near-Lossless Image Compression. Bai Y; Liu X; Wang K; Ji X; Wu X; Gao W IEEE Trans Pattern Anal Mach Intell; 2024 May; 46(5):3577-3594. PubMed ID: 38163313 [TBL] [Abstract][Full Text] [Related]
7. A wavelet transform with point-symmetric extension at tile boundaries. Kharitonenko I; Zhang X; Twelves S IEEE Trans Image Process; 2002; 11(12):1357-64. PubMed ID: 18249704 [TBL] [Abstract][Full Text] [Related]
8. An image multiresolution representation for lossless and lossy compression. Said A; Pearlman WA IEEE Trans Image Process; 1996; 5(9):1303-10. PubMed ID: 18285219 [TBL] [Abstract][Full Text] [Related]
9. Volumetric Medical Image Coding: An Object-based, Lossy-to-lossless and Fully Scalable Approach. Danyali H; Mertins A J Med Signals Sens; 2011 Jan; 1(1):1-11. PubMed ID: 22606653 [TBL] [Abstract][Full Text] [Related]
10. Wavelet-based lossy-to-lossless ECG compression in a unified vector quantization framework. Miaou SG; Chao SN IEEE Trans Biomed Eng; 2005 Mar; 52(3):539-43. PubMed ID: 15759584 [TBL] [Abstract][Full Text] [Related]
11. Lossless image compression with projection-based and adaptive reversible integer wavelet transforms. Deever AT; Hemami SS IEEE Trans Image Process; 2003; 12(5):489-99. PubMed ID: 18237926 [TBL] [Abstract][Full Text] [Related]
13. Integer wavelet transform for embedded lossy to lossless image compression. Reichel J; Menegaz G; Nadenau MJ; Kunt M IEEE Trans Image Process; 2001; 10(3):383-92. PubMed ID: 18249628 [TBL] [Abstract][Full Text] [Related]
14. Dynamic Neural Network for Lossy-to-Lossless Image Coding. Dardouri T; Kaaniche M; Benazza-Benyahia A; Pesquet JC IEEE Trans Image Process; 2022; 31():569-584. PubMed ID: 34890328 [TBL] [Abstract][Full Text] [Related]
15. Lossless White Balance for Improved Lossless CFA Image and Video Compression. Lee Y; Hirakawa K IEEE Trans Image Process; 2022; 31():3309-3321. PubMed ID: 35482698 [TBL] [Abstract][Full Text] [Related]
16. Wavelet-based compression of medical images: filter-bank selection and evaluation. Saffor A; bin Ramli AR; Ng KH Australas Phys Eng Sci Med; 2003 Jun; 26(2):39-44. PubMed ID: 12956184 [TBL] [Abstract][Full Text] [Related]
17. Lossless, near-lossless, and refinement coding of bilevel images. Martins B; Forchhammer S IEEE Trans Image Process; 1999; 8(5):601-13. PubMed ID: 18267477 [TBL] [Abstract][Full Text] [Related]
18. Boundary operation of 2-D nonseparable linear-phase paraunitary filter banks. Muramatsu S; Kobayashi T; Hiki M; Kikuchi H IEEE Trans Image Process; 2012 Apr; 21(4):2314-8. PubMed ID: 22203718 [TBL] [Abstract][Full Text] [Related]
19. Hierarchical Lossy Bilevel Image Compression Based on Cutset Sampling. Zha S; Pappas TN; Neuhoff DL IEEE Trans Image Process; 2021; 30():1527-1541. PubMed ID: 33360989 [TBL] [Abstract][Full Text] [Related]
20. Lossy cutset coding of bilevel images based on Markov random fields. Reyes MG; Neuhoff DL; Pappas TN IEEE Trans Image Process; 2014 Apr; 23(4):1652-65. PubMed ID: 24808337 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]