These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 24918259)

  • 21. Signal enhancement of electrochemical biosensors via direct electrochemical oxidation of silver nanoparticle labels coated with zwitterionic polymers.
    Geagea R; Aubert PH; Banet P; Sanson N
    Chem Commun (Camb); 2015; 51(2):402-5. PubMed ID: 25407013
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fabrication of disposable electrochemical devices using silver ink and office paper.
    de Araujo WR; Paixão TR
    Analyst; 2014 Jun; 139(11):2742-7. PubMed ID: 24715150
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantitative electrochemical metalloimmunoassay for TFF3 in urine using a paper analytical device.
    DeGregory PR; Tsai YJ; Scida K; Richards I; Crooks RM
    Analyst; 2016 Mar; 141(5):1734-44. PubMed ID: 26824090
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultrasensitive electrochemical immunoassay for carcinoembryonic antigen based on three-dimensional macroporous gold nanoparticles/graphene composite platform and multienzyme functionalized nanoporous silver label.
    Sun G; Lu J; Ge S; Song X; Yu J; Yan M; Huang J
    Anal Chim Acta; 2013 May; 775():85-92. PubMed ID: 23601978
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrochemical immunosensor based on nanoporpus gold loading thionine for carcinoembryonic antigen.
    Sun X; Ma Z
    Anal Chim Acta; 2013 May; 780():95-100. PubMed ID: 23680556
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthesis of silver nanoparticle-hollow titanium phosphate sphere hybrid as a label for ultrasensitive electrochemical detection of human interleukin-6.
    Peng J; Feng LN; Ren ZJ; Jiang LP; Zhu JJ
    Small; 2011 Oct; 7(20):2921-8. PubMed ID: 21990194
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Early diagnosis of blast fungus, Magnaporthe oryzae, in rice plant by using an ultra-sensitive electrically magnetic-controllable electrochemical biosensor.
    Yang W; Zhang H; Li M; Wang Z; Zhou J; Wang S; Lu G; Fu F
    Anal Chim Acta; 2014 Nov; 850():85-91. PubMed ID: 25441164
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Highly sensitive, label-free colorimetric assay of trypsin using silver nanoparticles.
    Miao P; Liu T; Li X; Ning L; Yin J; Han K
    Biosens Bioelectron; 2013 Nov; 49():20-4. PubMed ID: 23708813
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nucleic acid-modulated silver nanoparticles: a new electrochemical platform for sensing chloride ion.
    Jin J; Ouyang X; Li J; Jiang J; Wang H; Wang Y; Yang R
    Analyst; 2011 Sep; 136(18):3629-34. PubMed ID: 21789316
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultrasensitive electrochemical detection for DNA arrays based on silver nanoparticle aggregates.
    Li H; Sun Z; Zhong W; Hao N; Xu D; Chen HY
    Anal Chem; 2010 Jul; 82(13):5477-83. PubMed ID: 20550213
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Differentiation and characterization of isotopically modified silver nanoparticles in aqueous media using asymmetric-flow field flow fractionation coupled to optical detection and mass spectrometry.
    Gigault J; Hackley VA
    Anal Chim Acta; 2013 Feb; 763():57-66. PubMed ID: 23340287
    [TBL] [Abstract][Full Text] [Related]  

  • 32. para-Sulfonatocalix[6]arene-modified silver nanoparticles electrodeposited on glassy carbon electrode: preparation and electrochemical sensing of methyl parathion.
    Bian Y; Li C; Li H
    Talanta; 2010 May; 81(3):1028-33. PubMed ID: 20298889
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrochemical detection of type 2 diabetes mellitus-related SNP via DNA-mediated growth of silver nanoparticles on single walled carbon nanotubes.
    Tao J; Zhao P; Zheng J; Wu C; Shi M; Li J; Li Y; Yang R
    Chem Commun (Camb); 2015 Nov; 51(86):15704-7. PubMed ID: 26365891
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterisation of biosynthesised silver nanoparticles by scanning electrochemical microscopy (SECM) and voltammetry.
    Battistel D; Baldi F; Gallo M; Faleri C; Daniele S
    Talanta; 2015 Jan; 132():294-300. PubMed ID: 25476311
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Magnetic beads-based electrochemical immunosensor for detection of pseudorabies virus antibody in swine serum.
    Li F; Zhou R; Zhao K; Chen H; Hu Y
    Talanta; 2011 Dec; 87():302-6. PubMed ID: 22099683
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A competitive strategy coupled with endonuclease-assisted target recycling for DNA detection using silver-nanoparticle-tagged carbon nanospheres as labels.
    Zhu Z; Gao F; Lei J; Dong H; Ju H
    Chemistry; 2012 Oct; 18(43):13871-6. PubMed ID: 22987776
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Study on aggregation behavior of Cytochrome C-conjugated silver nanoparticles using asymmetrical flow field-flow fractionation.
    Kim ST; Lee YJ; Hwang YS; Lee S
    Talanta; 2015 Jan; 132():939-44. PubMed ID: 25476400
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Plasmonic imaging of electrochemical oxidation of single nanoparticles.
    Fang Y; Wang W; Wo X; Luo Y; Yin S; Wang Y; Shan X; Tao N
    J Am Chem Soc; 2014 Sep; 136(36):12584-7. PubMed ID: 25140732
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A dual amplification strategy for DNA detection combining bio-barcode assay and metal-enhanced fluorescence modality.
    Zhou Z; Li T; Huang H; Chen Y; Liu F; Huang C; Li N
    Chem Commun (Camb); 2014 Nov; 50(87):13373-6. PubMed ID: 25233044
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An inkjet-printed electrowetting valve for paper-fluidic sensors.
    Koo CK; He F; Nugen SR
    Analyst; 2013 Sep; 138(17):4998-5004. PubMed ID: 23828822
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.