BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 24918260)

  • 1. Selective deposition of Ru nanoparticles on TiSi₂ nanonet and its utilization for Li₂O₂ formation and decomposition.
    Xie J; Yao X; Madden IP; Jiang DE; Chou LY; Tsung CK; Wang D
    J Am Chem Soc; 2014 Jun; 136(25):8903-6. PubMed ID: 24918260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functionalizing Titanium Disilicide Nanonets with Cobalt Oxide and Palladium for Stable Li Oxygen Battery Operations.
    Yao X; Cheng Q; Xie J; Dong Q; Wang D
    ACS Appl Mater Interfaces; 2015 Oct; 7(39):21948-55. PubMed ID: 26308102
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Site-selective deposition of twinned platinum nanoparticles on TiSi2 nanonets by atomic layer deposition and their oxygen reduction activities.
    Xie J; Yang X; Han B; Shao-Horn Y; Wang D
    ACS Nano; 2013 Jul; 7(7):6337-45. PubMed ID: 23795615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three dimensionally ordered mesoporous carbon as a stable, high-performance Li-O₂ battery cathode.
    Xie J; Yao X; Cheng Q; Madden IP; Dornath P; Chang CC; Fan W; Wang D
    Angew Chem Int Ed Engl; 2015 Mar; 54(14):4299-303. PubMed ID: 25676920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Titanium silicide nanonet as a new material platform for advanced lithium ion battery applications.
    Zhou S; Yang X; Xie J; Simpson ZI; Wang D
    Chem Commun (Camb); 2013 Jul; 49(58):6470-6. PubMed ID: 23759741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pd nanoparticles on ZnO-passivated porous carbon by atomic layer deposition: an effective electrochemical catalyst for Li-O2 battery.
    Luo X; Piernavieja-Hermida M; Lu J; Wu T; Wen J; Ren Y; Miller D; Zak Fang Z; Lei Y; Amine K
    Nanotechnology; 2015 Apr; 26(16):164003. PubMed ID: 25829367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ru/ITO: a carbon-free cathode for nonaqueous Li-O2 battery.
    Li F; Tang DM; Chen Y; Golberg D; Kitaura H; Zhang T; Yamada A; Zhou H
    Nano Lett; 2013 Oct; 13(10):4702-7. PubMed ID: 24063602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A nanonet-enabled Li ion battery cathode material with high power rate, high capacity, and long cycle lifetime.
    Zhou S; Yang X; Lin Y; Xie J; Wang D
    ACS Nano; 2012 Jan; 6(1):919-24. PubMed ID: 22176699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon-, binder-, and precious metal-free cathodes for non-aqueous lithium-oxygen batteries: nanoflake-decorated nanoneedle oxide arrays.
    Riaz A; Jung KN; Chang W; Shin KH; Lee JW
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):17815-22. PubMed ID: 25280376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DMSO-Li2O2 Interface in the Rechargeable Li-O2 Battery Cathode: Theoretical and Experimental Perspectives on Stability.
    Schroeder MA; Kumar N; Pearse AJ; Liu C; Lee SB; Rubloff GW; Leung K; Noked M
    ACS Appl Mater Interfaces; 2015 Jun; 7(21):11402-11. PubMed ID: 25945948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding the growth mechanism of titanium disilicide nanonets.
    Zhou S; Xie J; Wang D
    ACS Nano; 2011 May; 5(5):4205-10. PubMed ID: 21506560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unique lithiation and delithiation processes of nanostructured metal silicides.
    Zhou S; Wang D
    ACS Nano; 2010 Nov; 4(11):7014-20. PubMed ID: 20942440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Turning Waste Chemicals into Wealth-A New Approach To Synthesize Efficient Cathode Material for an Li-O
    Yao Y; Wu F
    ACS Appl Mater Interfaces; 2017 Sep; 9(37):31907-31912. PubMed ID: 28846374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hierarchical micron-sized mesoporous/macroporous graphene with well-tuned surface oxygen chemistry for high capacity and cycling stability Li-O2 battery.
    Zhou W; Zhang H; Nie H; Ma Y; Zhang Y; Zhang H
    ACS Appl Mater Interfaces; 2015 Feb; 7(5):3389-97. PubMed ID: 25594548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. O2 reduction by lithium on Au(111) and Pt(111).
    Xu Y; Shelton WA
    J Chem Phys; 2010 Jul; 133(2):024703. PubMed ID: 20632766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface Study of Lithium-Air Battery Oxygen Cathodes in Different Solvent-Electrolyte pairs.
    Marchini F; Herrera S; Torres W; Tesio AY; Williams FJ; Calvo EJ
    Langmuir; 2015 Aug; 31(33):9236-45. PubMed ID: 26222833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transition Metal Hollow Nanocages as Promising Cathodes for the Long-Term Cyclability of Li⁻O₂ Batteries.
    Chatterjee A; Or SW; Cao Y
    Nanomaterials (Basel); 2018 May; 8(5):. PubMed ID: 29735943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atomic-layer-deposition alumina induced carbon on porous Ni(x)Co(1-x)O nanonets for enhanced pseudocapacitive and Li-ion storage performance.
    Guan C; Wang Y; Zacharias M; Wang J; Fan HJ
    Nanotechnology; 2015 Jan; 26(1):014001. PubMed ID: 25489994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.