These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 24918295)

  • 1. Prediction of protein S-nitrosylation sites based on adapted normal distribution bi-profile Bayes and Chou's pseudo amino acid composition.
    Jia C; Lin X; Wang Z
    Int J Mol Sci; 2014 Jun; 15(6):10410-23. PubMed ID: 24918295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of S-nitrosylation sites based on multiple features combination.
    Li T; Song R; Yin Q; Gao M; Chen Y
    Sci Rep; 2019 Feb; 9(1):3098. PubMed ID: 30816267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. iSNO-PseAAC: predict cysteine S-nitrosylation sites in proteins by incorporating position specific amino acid propensity into pseudo amino acid composition.
    Xu Y; Ding J; Wu LY; Chou KC
    PLoS One; 2013; 8(2):e55844. PubMed ID: 23409062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. OH-PRED: prediction of protein hydroxylation sites by incorporating adapted normal distribution bi-profile Bayes feature extraction and physicochemical properties of amino acids.
    Jia CZ; He WY; Yao YH
    J Biomol Struct Dyn; 2017 Mar; 35(4):829-835. PubMed ID: 26957000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. iSNO-AAPair: incorporating amino acid pairwise coupling into PseAAC for predicting cysteine S-nitrosylation sites in proteins.
    Xu Y; Shao XJ; Wu LY; Deng NY; Chou KC
    PeerJ; 2013; 1():e171. PubMed ID: 24109555
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PSNO: predicting cysteine S-nitrosylation sites by incorporating various sequence-derived features into the general form of Chou's PseAAC.
    Zhang J; Zhao X; Sun P; Ma Z
    Int J Mol Sci; 2014 Jun; 15(7):11204-19. PubMed ID: 24968264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of lysine propionylation sites using biased SVM and incorporating four different sequence features into Chou's PseAAC.
    Ju Z; He JJ
    J Mol Graph Model; 2017 Sep; 76():356-363. PubMed ID: 28763688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of lysine crotonylation sites by incorporating the composition of k-spaced amino acid pairs into Chou's general PseAAC.
    Ju Z; He JJ
    J Mol Graph Model; 2017 Oct; 77():200-204. PubMed ID: 28886434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SPalmitoylC-PseAAC: A sequence-based model developed via Chou's 5-steps rule and general PseAAC for identifying S-palmitoylation sites in proteins.
    Hussain W; Khan YD; Rasool N; Khan SA; Chou KC
    Anal Biochem; 2019 Mar; 568():14-23. PubMed ID: 30593778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting S-nitrosylation proteins and sites by fusing multiple features.
    Qiu WR; Wang QK; Guan MY; Jia JH; Xiao X
    Math Biosci Eng; 2021 Oct; 18(6):9132-9147. PubMed ID: 34814339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of GABAA receptor proteins using the concept of Chou's pseudo-amino acid composition and support vector machine.
    Mohabatkar H; Mohammad Beigi M; Esmaeili A
    J Theor Biol; 2011 Jul; 281(1):18-23. PubMed ID: 21536049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identify Lysine Neddylation Sites Using Bi-profile Bayes Feature Extraction
    Ju Z; Wang SY
    Curr Genomics; 2019 Dec; 20(8):592-601. PubMed ID: 32581647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SPrenylC-PseAAC: A sequence-based model developed via Chou's 5-steps rule and general PseAAC for identifying S-prenylation sites in proteins.
    Hussain W; Khan YD; Rasool N; Khan SA; Chou KC
    J Theor Biol; 2019 May; 468():1-11. PubMed ID: 30768975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SNOSite: exploiting maximal dependence decomposition to identify cysteine S-nitrosylation with substrate site specificity.
    Lee TY; Chen YJ; Lu TC; Huang HD; Chen YJ
    PLoS One; 2011; 6(7):e21849. PubMed ID: 21789187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of S-nitrosylation sites by integrating support vector machines and random forest.
    Hasan MM; Manavalan B; Khatun MS; Kurata H
    Mol Omics; 2019 Dec; 15(6):451-458. PubMed ID: 31710075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GPS-SNO: computational prediction of protein S-nitrosylation sites with a modified GPS algorithm.
    Xue Y; Liu Z; Gao X; Jin C; Wen L; Yao X; Ren J
    PLoS One; 2010 Jun; 5(6):e11290. PubMed ID: 20585580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural analysis of cysteine S-nitrosylation: a modified acid-based motif and the emerging role of trans-nitrosylation.
    Marino SM; Gladyshev VN
    J Mol Biol; 2010 Jan; 395(4):844-59. PubMed ID: 19854201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of protein homo-oligomer types by pseudo amino acid composition: Approached with an improved feature extraction and Naive Bayes Feature Fusion.
    Zhang SW; Pan Q; Zhang HC; Shao ZC; Shi JY
    Amino Acids; 2006 Jun; 30(4):461-8. PubMed ID: 16773245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using a novel AdaBoost algorithm and Chou's Pseudo amino acid composition for predicting protein subcellular localization.
    Lin J; Wang Y
    Protein Pept Lett; 2011 Dec; 18(12):1219-25. PubMed ID: 21728988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of allergenic proteins by means of the concept of Chou's pseudo amino acid composition and a machine learning approach.
    Mohabatkar H; Beigi MM; Abdolahi K; Mohsenzadeh S
    Med Chem; 2013 Feb; 9(1):133-7. PubMed ID: 22931491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.