BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 24918587)

  • 1. Structural diversity in the dandelion (Taraxacum officinale) polyphenol oxidase family results in different responses to model substrates.
    Dirks-Hofmeister ME; Singh R; Leufken CM; Inlow JK; Moerschbacher BM
    PLoS One; 2014; 9(6):e99759. PubMed ID: 24918587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A specific amino acid residue in the catalytic site of dandelion polyphenol oxidases acts as 'selector' for substrate specificity.
    Prexler SM; Singh R; Moerschbacher BM; Dirks-Hofmeister ME
    Plant Mol Biol; 2018 Jan; 96(1-2):151-164. PubMed ID: 29218491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Site-directed mutagenesis of a tetrameric dandelion polyphenol oxidase (PPO-6) reveals the site of subunit interaction.
    Dirks-Hofmeister ME; Inlow JK; Moerschbacher BM
    Plant Mol Biol; 2012 Sep; 80(2):203-17. PubMed ID: 22814940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parameters that enhance the bacterial expression of active plant polyphenol oxidases.
    Dirks-Hofmeister ME; Kolkenbrock S; Moerschbacher BM
    PLoS One; 2013; 8(10):e77291. PubMed ID: 24204791
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The polyphenol oxidase gene family in land plants: Lineage-specific duplication and expansion.
    Tran LT; Taylor JS; Constabel CP
    BMC Genomics; 2012 Aug; 13():395. PubMed ID: 22897796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aurone synthase is a catechol oxidase with hydroxylase activity and provides insights into the mechanism of plant polyphenol oxidases.
    Molitor C; Mauracher SG; Rompel A
    Proc Natl Acad Sci U S A; 2016 Mar; 113(13):E1806-15. PubMed ID: 26976571
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dandelion PPO-1/PPO-2 domain-swaps: the C-terminal domain modulates the pH optimum and the linker affects SDS-mediated activation and stability.
    Leufken CM; Moerschbacher BM; Dirks-Hofmeister ME
    Biochim Biophys Acta; 2015 Feb; 1854(2):178-86. PubMed ID: 25484281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Considerations Regarding Activity Determinants of Fungal Polyphenol Oxidases Based on Mutational and Structural Studies.
    Nikolaivits E; Valmas A; Dedes G; Topakas E; Dimarogona M
    Appl Environ Microbiol; 2021 May; 87(11):. PubMed ID: 33741634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catechol Oxidase versus Tyrosinase Classification Revisited by Site-Directed Mutagenesis Studies.
    Prexler SM; Frassek M; Moerschbacher BM; Dirks-Hofmeister ME
    Angew Chem Int Ed Engl; 2019 Jun; 58(26):8757-8761. PubMed ID: 31037807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silencing and heterologous expression of ppo-2 indicate a specific function of a single polyphenol oxidase isoform in resistance of dandelion (Taraxacum officinale) against Pseudomonas syringae pv. tomato.
    Richter C; Dirks ME; Gronover CS; Prüfer D; Moerschbacher BM
    Mol Plant Microbe Interact; 2012 Feb; 25(2):200-10. PubMed ID: 22026646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of the amino acid position controlling the different enzymatic activities in walnut tyrosinase isoenzymes (jrPPO1 and jrPPO2).
    Panis F; Rompel A
    Sci Rep; 2020 Jul; 10(1):10813. PubMed ID: 32616720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conversion of walnut tyrosinase into a catechol oxidase by site directed mutagenesis.
    Panis F; Kampatsikas I; Bijelic A; Rompel A
    Sci Rep; 2020 Feb; 10(1):1659. PubMed ID: 32015350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional interaction of diphenols with polyphenol oxidase. Molecular determinants of substrate/inhibitor specificity.
    Kanade SR; Suhas VL; Chandra N; Gowda LR
    FEBS J; 2007 Aug; 274(16):4177-87. PubMed ID: 17651437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three polyphenol oxidases from red clover (Trifolium pratense) differ in enzymatic activities and activation properties.
    Schmitz GE; Sullivan ML; Hatfield RD
    J Agric Food Chem; 2008 Jan; 56(1):272-80. PubMed ID: 18069787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The polyphenol oxidase gene family in poplar: phylogeny, differential expression and identification of a novel, vacuolar isoform.
    Tran LT; Constabel CP
    Planta; 2011 Oct; 234(4):799-813. PubMed ID: 21633811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polyphenol oxidases in Physcomitrella: functional PPO1 knockout modulates cytokinin-dependent development in the moss Physcomitrella patens.
    Richter H; Lieberei R; Strnad M; Novák O; Gruz J; Rensing SA; von Schwartzenberg K
    J Exp Bot; 2012 Sep; 63(14):5121-35. PubMed ID: 22865913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Similar but Still Different: Which Amino Acid Residues Are Responsible for Varying Activities in Type-III Copper Enzymes?
    Kampatsikas I; Rompel A
    Chembiochem; 2021 Apr; 22(7):1161-1175. PubMed ID: 33108057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Type-3 copper proteins: recent advances on polyphenol oxidases.
    Kaintz C; Mauracher SG; Rompel A
    Adv Protein Chem Struct Biol; 2014; 97():1-35. PubMed ID: 25458353
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of a plant catechol oxidase containing a dicopper center.
    Klabunde T; Eicken C; Sacchettini JC; Krebs B
    Nat Struct Biol; 1998 Dec; 5(12):1084-90. PubMed ID: 9846879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and characterisation of a bryophyte polyphenol oxidase encoding gene from Physcomitrella patens.
    Richter H; Lieberei R; von Schwartzenberg K
    Plant Biol (Stuttg); 2005 May; 7(3):283-91. PubMed ID: 15912448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.