These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 24919013)

  • 1. Affine transform to reform pixel coordinates of EOG signals for controlling robot manipulators using gaze motions.
    Rusydi MI; Sasaki M; Ito S
    Sensors (Basel); 2014 Jun; 14(6):10107-23. PubMed ID: 24919013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct Gaze Estimation Based on Nonlinearity of EOG.
    Manabe H; Fukumoto M; Yagi T
    IEEE Trans Biomed Eng; 2015 Jun; 62(6):1553-62. PubMed ID: 25615905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removing the Interdependency between Horizontal and Vertical Eye-Movement Components in Electrooculograms.
    Chang WD; Cha HS; Im CH
    Sensors (Basel); 2016 Feb; 16(2):227. PubMed ID: 26907271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monopolar and bipolar electrooculography signal characteristics due to target displacements-have we seen the whole picture?
    Barbara N; Camilleri TA; Camilleri KP
    Physiol Meas; 2023 Mar; 44(3):. PubMed ID: 36599169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gaze Estimation Method Using Analysis of Electrooculogram Signals and Kinect Sensor.
    Sakurai K; Yan M; Tanno K; Tamura H
    Comput Intell Neurosci; 2017; 2017():2074752. PubMed ID: 28912800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 24-Gaze-Point Calibration Method for Improving the Precision of AC-EOG Gaze Estimation.
    Bin Suhaimi MSA; Matsushita K; Sasaki M; Njeri W
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31443438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EOG-Based Gaze Angle Estimation Using a Battery Model of the Eye.
    Barbara N; Camilleri TA; Camilleri KP
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6918-6921. PubMed ID: 31947430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GOM-Face: GKP, EOG, and EMG-based multimodal interface with application to humanoid robot control.
    Nam Y; Koo B; Cichocki A; Choi S
    IEEE Trans Biomed Eng; 2014 Feb; 61(2):453-62. PubMed ID: 24021635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimating direction and depth of visual fixation using electrooculography.
    Stevenson C; Tzyy-Ping Jung ; Cauwenberghs G
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():841-4. PubMed ID: 26736393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid Brain-Computer Interface (BCI) based on the EEG and EOG signals.
    Jiang J; Zhou Z; Yin E; Yu Y; Hu D
    Biomed Mater Eng; 2014; 24(6):2919-25. PubMed ID: 25226998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Object Grasp Control of a 3D Robot Arm by Combining EOG Gaze Estimation and Camera-Based Object Recognition.
    Amri Bin Suhaimi MS; Matsushita K; Kitamura T; Laksono PW; Sasaki M
    Biomimetics (Basel); 2023 May; 8(2):. PubMed ID: 37218794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aiming accuracy of the line of gaze and redesign of the gaze-pointing system.
    Chi CF; Lin CL
    Percept Mot Skills; 1997 Dec; 85(3 Pt 1):1111-20. PubMed ID: 9399328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human-Machine Interface: Multiclass Classification by Machine Learning on 1D EOG Signals for the Control of an Omnidirectional Robot.
    Pérez-Reynoso FD; Rodríguez-Guerrero L; Salgado-Ramírez JC; Ortega-Palacios R
    Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502773
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Eye-movements in a two-dimensional plane: a method for calibration and analysis using the vertical and horizontal EOG.
    Woestenburg JC; Verbaten MN; Slangen JL
    Biol Psychol; 1984 Mar; 18(2):149-60. PubMed ID: 6733193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid EEG-EOG brain-computer interface system for practical machine control.
    Punsawad Y; Wongsawat Y; Parnichkun M
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1360-3. PubMed ID: 21096331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Robust Gaze Estimation Approach via Exploring Relevant Electrooculogram Features and Optimal Electrodes Placements.
    Zeng Z; Tao L; Zhu H; Zhu Y; Meng L; Fan J; Chen C; Chen W
    IEEE J Transl Eng Health Med; 2024; 12():56-65. PubMed ID: 38088999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving Eye Motion Sequence Recognition Using Electrooculography Based on Context-Dependent HMM.
    Fang F; Shinozaki T; Horiuchi Y; Kuroiwa S; Furui S; Musha T
    Comput Intell Neurosci; 2016; 2016():6898031. PubMed ID: 27774099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel EOG/EEG hybrid human-machine interface adopting eye movements and ERPs: application to robot control.
    Ma J; Zhang Y; Cichocki A; Matsuno F
    IEEE Trans Biomed Eng; 2015 Mar; 62(3):876-89. PubMed ID: 25398172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlling a human-computer interface system with a novel classification method that uses electrooculography signals.
    Wu SL; Liao LD; Lu SW; Jiang WL; Chen SA; Lin CT
    IEEE Trans Biomed Eng; 2013 Aug; 60(8):2133-41. PubMed ID: 23446030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3-D-Gaze-Based Robotic Grasping Through Mimicking Human Visuomotor Function for People With Motion Impairments.
    Li S; Zhang X; Webb JD
    IEEE Trans Biomed Eng; 2017 Dec; 64(12):2824-2835. PubMed ID: 28278455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.