BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 24919058)

  • 1. Bioremediation of a complex industrial effluent by biosorbents derived from freshwater macroalgae.
    Kidgell JT; de Nys R; Hu Y; Paul NA; Roberts DA
    PLoS One; 2014; 9(2):e94706. PubMed ID: 24919058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The sequential application of macroalgal biosorbents for the bioremediation of a complex industrial effluent.
    Kidgell JT; de Nys R; Paul NA; Roberts DA
    PLoS One; 2014; 9(7):e101309. PubMed ID: 25061756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous biosorption of selenium, arsenic and molybdenum with modified algal-based biochars.
    Johansson CL; Paul NA; de Nys R; Roberts DA
    J Environ Manage; 2016 Jan; 165():117-123. PubMed ID: 26413805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From waste water treatment to land management: Conversion of aquatic biomass to biochar for soil amelioration and the fortification of crops with essential trace elements.
    Roberts DA; Paul NA; Cole AJ; de Nys R
    J Environ Manage; 2015 Jul; 157():60-8. PubMed ID: 25881153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioremediation for coal-fired power stations using macroalgae.
    Roberts DA; Paul NA; Bird MI; de Nys R
    J Environ Manage; 2015 Apr; 153():25-32. PubMed ID: 25646673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Algal biochar enhances the re-vegetation of stockpiled mine soils with native grass.
    Roberts DA; Cole AJ; Paul NA; de Nys R
    J Environ Manage; 2015 Sep; 161():173-180. PubMed ID: 26172107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The complexity of biosorption treatments for oxyanions in a multi-element mine effluent.
    Johansson CL; Paul NA; de Nys R; Roberts DA
    J Environ Manage; 2015 Mar; 151():386-92. PubMed ID: 25590609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth and metal bioconcentration by conspecific freshwater macroalgae cultured in industrial waste water.
    Ellison MB; de Nys R; Paul NA; Roberts DA
    PeerJ; 2014; 2():e401. PubMed ID: 24883258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tannery effluent treatments with mangrove fungi, grass root biomass, and biochar.
    Ameen F; Alsarraf MJ; Abalkhail T; Stephenson SL
    World J Microbiol Biotechnol; 2024 Jun; 40(8):249. PubMed ID: 38907753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biosorption of heavy metals.
    Volesky B; Holan ZR
    Biotechnol Prog; 1995; 11(3):235-50. PubMed ID: 7619394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strategies for chromium bioremediation of tannery effluent.
    Garg SK; Tripathi M; Srinath T
    Rev Environ Contam Toxicol; 2012; 217():75-140. PubMed ID: 22350558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heavy metal removal from aqueous solutions using engineered magnetic biochars derived from waste marine macro-algal biomass.
    Son EB; Poo KM; Chang JS; Chae KJ
    Sci Total Environ; 2018 Feb; 615():161-168. PubMed ID: 28964991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removing constraints on the biomass production of freshwater macroalgae by manipulating water exchange to manage nutrient flux.
    Cole AJ; de Nys R; Paul NA
    PLoS One; 2014; 9(7):e101284. PubMed ID: 25000501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sustainable sources of biomass for bioremediation of heavy metals in waste water derived from coal-fired power generation.
    Saunders RJ; Paul NA; Hu Y; de Nys R
    PLoS One; 2012; 7(5):e36470. PubMed ID: 22590550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polishing of painting process effluents through adsorption with biochar from winemaking residues.
    Carvalho FL; Pinto D; Schio RR; Dos Santos JP; Ketzer F; Silva LFO; Dotto GL
    Environ Sci Pollut Res Int; 2022 Sep; 29(44):66348-66358. PubMed ID: 35499731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A critical review on selenium removal capacity from water using emerging non-conventional biosorbents.
    Ullah H; Chen B; Rashid A; Zhao R; Shahab A; Yu G; Wong MH; Khan S
    Environ Pollut; 2023 Dec; 339():122644. PubMed ID: 37827352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Freshwater Macroalgae,
    Panchal SK; Ghattamaneni NKR; Magnusson M; Cole A; Roberts D; Neveux N; Brown L; Paul NA
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of CO2 on algal growth in industrial waste water for bioenergy and bioremediation applications.
    Roberts DA; de Nys R; Paul NA
    PLoS One; 2013; 8(11):e81631. PubMed ID: 24278451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal and biodegradation of naphthenic acids by biochar and attached environmental biofilms in the presence of co-contaminating metals.
    Frankel ML; Bhuiyan TI; Veksha A; Demeter MA; Layzell DB; Helleur RJ; Hill JM; Turner RJ
    Bioresour Technol; 2016 Sep; 216():352-61. PubMed ID: 27259191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biosorption of lead(II) from aqueous solutions by non-living algal biomass Oedogonium sp. and Nostoc sp.--a comparative study.
    Gupta VK; Rastogi A
    Colloids Surf B Biointerfaces; 2008 Jul; 64(2):170-8. PubMed ID: 18321684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.