These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 24919203)

  • 1. ProMT: effective human promoter prediction using Markov chain model based on DNA structural properties.
    Xiong D; Liu R; Xiao F; Gao X
    IEEE Trans Nanobioscience; 2014 Dec; 13(4):374-83. PubMed ID: 24919203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling promoter grammars with evolving hidden Markov models.
    Won KJ; Sandelin A; Marstrand TT; Krogh A
    Bioinformatics; 2008 Aug; 24(15):1669-75. PubMed ID: 18535083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of core promoter modules in Drosophila and their application in accurate transcription start site prediction.
    Ohler U
    Nucleic Acids Res; 2006; 34(20):5943-50. PubMed ID: 17068082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adding sequence context to a Markov background model improves the identification of regulatory elements.
    Kim NK; Tharakaraman K; Spouge JL
    Bioinformatics; 2006 Dec; 22(23):2870-5. PubMed ID: 17068091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A pattern-based nearest neighbor search approach for promoter prediction using DNA structural profiles.
    Gan Y; Guan J; Zhou S
    Bioinformatics; 2009 Aug; 25(16):2006-12. PubMed ID: 19515962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using CorePromoter to find human core promoters.
    Zhang MQ
    Curr Protoc Bioinformatics; 2005 Jul; Chapter 2():Unit 2.9. PubMed ID: 18428749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational detection of prokaryotic core promoters in genomic sequences.
    Kim KB; Sim JS
    J Microbiol; 2005 Oct; 43(5):411-6. PubMed ID: 16273032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finding short DNA motifs using permuted Markov models.
    Zhao X; Huang H; Speed TP
    J Comput Biol; 2005; 12(6):894-906. PubMed ID: 16108724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterogeneity of Arabidopsis core promoters revealed by high-density TSS analysis.
    Yamamoto YY; Yoshitsugu T; Sakurai T; Seki M; Shinozaki K; Obokata J
    Plant J; 2009 Oct; 60(2):350-62. PubMed ID: 19563441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Motif finding in DNA sequences based on skipping nonconserved positions in background Markov chains.
    Zhao X; Sze SH
    J Comput Biol; 2011 May; 18(5):759-70. PubMed ID: 21554019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved prediction of bacterial transcription start sites.
    Gordon JJ; Towsey MW; Hogan JM; Mathews SA; Timms P
    Bioinformatics; 2006 Jan; 22(2):142-8. PubMed ID: 16287942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of transcription start sites based on feature selection using AMOSA.
    Wang X; Bandyopadhyay S; Xuan Z; Zhao X; Zhang MQ; Zhang X
    Comput Syst Bioinformatics Conf; 2007; 6():183-93. PubMed ID: 17951823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EnsemPro: an ensemble approach to predicting transcription start sites in human genomic DNA sequences.
    Won HH; Kim MJ; Kim S; Kim JW
    Genomics; 2008 Mar; 91(3):259-66. PubMed ID: 18164178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Composite dependency-reflecting model for core promoter recognition in vertebrate genomic DNA sequences.
    Kim KB; Park SH
    J Biochem Mol Biol; 2004 Nov; 37(6):648-56. PubMed ID: 15607022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A mixture model-based discriminate analysis for identifying ordered transcription factor binding site pairs in gene promoters directly regulated by estrogen receptor-alpha.
    Li L; Cheng AS; Jin VX; Paik HH; Fan M; Li X; Zhang W; Robarge J; Balch C; Davuluri RV; Kim S; Huang TH; Nephew KP
    Bioinformatics; 2006 Sep; 22(18):2210-6. PubMed ID: 16809387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detecting correlations among functional-sequence motifs.
    Pirino D; Rigosa J; Ledda A; Ferretti L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066124. PubMed ID: 23005179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sarment: Python modules for HMM analysis and partitioning of sequences.
    Guéguen L
    Bioinformatics; 2005 Aug; 21(16):3427-8. PubMed ID: 15947017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of prokaryotic promoters based on prediction of transcriptional units.
    Lin JC; Xu JL; Luo JH; Li YX
    Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai); 2003 Apr; 35(4):317-24. PubMed ID: 12673384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Statistical mechanical modeling of genome-wide transcription factor occupancy data by MatrixREDUCE.
    Foat BC; Morozov AV; Bussemaker HJ
    Bioinformatics; 2006 Jul; 22(14):e141-9. PubMed ID: 16873464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ARF-TSS: an alternative method for identification of transcription start site in bacteria.
    Wang C; Lee J; Deng Y; Tao F; Zhang LH
    Biotechniques; 2012 Apr; 52(4):. PubMed ID: 26307248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.