These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 24919439)

  • 21. Theoretical Insights into the Selectivity of Hydrophilic Sulfonated and Phosphorylated Ligands to Am(III) and Eu(III) Ions.
    Zou Y; Lan JH; Yuan LY; Wang CZ; Wu QY; Chai ZF; Ren P; Shi WQ
    Inorg Chem; 2023 Mar; 62(11):4581-4589. PubMed ID: 36935646
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bicyclic and acyclic diamides: comparison of their aqueous phase binding constants with Nd(III), Am(III), Pu(IV), Np(V), Pu(VI), and U(VI).
    Sinkov SI; Rapko BM; Lumetta GJ; Hay BP; Hutchison JE; Parks BW
    Inorg Chem; 2004 Dec; 43(26):8404-13. PubMed ID: 15606189
    [TBL] [Abstract][Full Text] [Related]  

  • 23. New route to amide-functionalized N-donor ligands enables improved selective solvent extraction of trivalent actinides.
    Bulmer R; Spencer TB; Wilden A; Modolo G; Vu TH; Simonin JP; Lewis FW
    Chem Commun (Camb); 2022 Sep; 58(76):10667-10670. PubMed ID: 36063119
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Selectivity of the highly preorganized tetradentate ligand 2,9-di(pyrid-2-yl)-1,10-phenanthroline for metal ions in aqueous solution, including lanthanide(III) ions and the uranyl(VI) cation.
    Carolan AN; Cockrell GM; Williams NJ; Zhang G; VanDerveer DG; Lee HS; Thummel RP; Hancock RD
    Inorg Chem; 2013 Jan; 52(1):15-27. PubMed ID: 23231454
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Insights into the Complexation Mechanism of a Promising Lipophilic PyTri Ligand for Actinide Partitioning from Spent Nuclear Fuel.
    Galluccio F; Macerata E; Weßling P; Adam C; Mossini E; Panzeri W; Mariani M; Mele A; Geist A; Panak PJ
    Inorg Chem; 2022 Nov; 61(46):18400-18411. PubMed ID: 36331210
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Separating lanthanides and actinides from nitric acid solutions by using N,N-di(2-ethylhexyl)-diglycolamic acid (HDEHDGA).
    Zhang Y; Yang S; Yuan X; Zhao Y; Tian G
    Chem Commun (Camb); 2017 Jun; 53(48):6421-6423. PubMed ID: 28555236
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Selective Separation of U(VI) from Pu(IV) by 2,9-Diamide-1,10-phenanthroline Ligands at High Acidity: Extraction and Coordination Chemistry.
    Liu F; Xiu TY; Shehzad H; Jin W; Huang ZW; Yang CC; Fu X; Wang XP; Shi WQ; Yuan LY
    Inorg Chem; 2024 Feb; 63(8):3859-3869. PubMed ID: 38335061
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Actinide selectivity of 1,10-phenanthroline-2,9-dicarboxamide and its derivatives: a theoretical prediction followed by experimental validation.
    Manna D; Mula S; Bhattacharyya A; Chattopadhyay S; Ghanty TK
    Dalton Trans; 2015 Jan; 44(3):1332-40. PubMed ID: 25420077
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Theoretical Insights into Modification of Nitrogen-Donor Ligands to Improve Performance on Am(III)/Eu(III) Separation.
    Chen YM; Wang CZ; Wu QY; Lan JH; Chai ZF; Nie CM; Shi WQ
    Inorg Chem; 2020 Mar; 59(5):3221-3231. PubMed ID: 32048832
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Theoretical insights into selective extraction of Am(III) from Cm(III) and Eu(III) with asymmetric N-heterocyclic ligands.
    Chen YM; Wang CZ; Zhang L; Wu QY; Lan JH; Chai ZF; Shi WQ
    Dalton Trans; 2024 Apr; 53(17):7406-7413. PubMed ID: 38587851
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of normal phase-high performance liquid chromatography-atmospherical pressure chemical ionization-mass spectrometry method for the study of 6,6'-bis-(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-benzo[1,2,4]-triazin-3-yl)-[2,2']-bipyridine hydrolytic degradation.
    Nicolas G; Jankowski CK; Lucas-Lamouroux C; Bresson C
    J Chromatogr A; 2011 Sep; 1218(37):6369-78. PubMed ID: 21802688
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Complexation of lanthanides(III), americium(III), and uranium(VI) with bitopic N,O ligands: an experimental and theoretical study.
    Marie C; Miguirditchian M; Guillaumont D; Tosseng A; Berthon C; Guilbaud P; Duvail M; Bisson J; Guillaneux D; Pipelier M; Dubreuil D
    Inorg Chem; 2011 Jul; 50(14):6557-66. PubMed ID: 21657800
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Selective sorption of actinides by titania nanoparticles covalently functionalized with simple organic ligands.
    Veliscek-Carolan J; Jolliffe KA; Hanley TL
    ACS Appl Mater Interfaces; 2013 Nov; 5(22):11984-94. PubMed ID: 24180219
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Separation and Complexation of Trivalent Actinides and Lanthanides by Two Novel Asymmetric N,O-Hybrid Pyridyl Ligands: A Combination of Phosphoryl and Triazinyl Groups.
    Miao Y; Xu L; Yang X; Wang S; Zhang J; Xu C; Xiao C
    Inorg Chem; 2022 Nov; 61(44):17911-17923. PubMed ID: 36283076
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Exploring electronic effects on the partitioning of actinides(iii) from lanthanides(iii) using functionalised bis-triazinyl phenanthroline ligands.
    Edwards AC; Wagner C; Geist A; Burton NA; Sharrad CA; Adams RW; Pritchard RG; Panak PJ; Whitehead RC; Harwood LM
    Dalton Trans; 2016 Nov; 45(45):18102-18112. PubMed ID: 27488559
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Highly selective separation of tetravalent plutonium from complex system with novel phenylpyridine diamide ligands.
    Yao L; Junli W; Yuhang L; Hui W; Wentao W; Baole L; Taihong Y
    RSC Adv; 2024 Jan; 14(1):560-567. PubMed ID: 38173602
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Extraction of minor actinides, lanthanides and other fission products by silica-immobilized BTBP/BTPhen ligands.
    Afsar A; Distler P; Harwood LM; John J; Westwood J
    Chem Commun (Camb); 2017 Apr; 53(28):4010-4013. PubMed ID: 28338148
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Theoretical insights into selective separation of trivalent actinide and lanthanide by ester and amide ligands based on phenanthroline skeleton.
    Wang C; Wu QY; Wang CZ; Lan JH; Nie CM; Chai ZF; Shi WQ
    Dalton Trans; 2020 Apr; 49(13):4093-4099. PubMed ID: 32141457
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Complexation and extraction of trivalent actinides over lanthanides using highly soluble phenanthroline diamide ligands with different side chains.
    Xiu T; Liu L; Liu S; Shehzad H; Liang Y; Zhang M; Ye G; Jiao C; Yuan L; Shi W
    J Hazard Mater; 2024 Mar; 465():133508. PubMed ID: 38228009
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The impact of alicyclic substituents on the extraction ability of new family of 1,10-phenanthroline-2,9-diamides.
    Lemport PS; Matveev PI; Yatsenko AV; Evsiunina MV; Petrov VS; Tarasevich BN; Roznyatovsky VA; Dorovatovskii PV; Khrustalev VN; Zhokhov SS; Solov'ev VP; Aslanov LA; Petrov VG; Kalmykov SN; Nenajdenko VG; Ustyniuk YA
    RSC Adv; 2020 Jul; 10(44):26022-26033. PubMed ID: 35519740
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.