These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

582 related articles for article (PubMed ID: 24919525)

  • 1. The combinational use of CRISPR/Cas9-based gene editing and targeted toxin technology enables efficient biallelic knockout of the α-1,3-galactosyltransferase gene in porcine embryonic fibroblasts.
    Sato M; Miyoshi K; Nagao Y; Nishi Y; Ohtsuka M; Nakamura S; Sakurai T; Watanabe S
    Xenotransplantation; 2014; 21(3):291-300. PubMed ID: 24919525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of α-1,3-Galactosyltransferase-Deficient Porcine Embryonic Fibroblasts by CRISPR/Cas9-Mediated Knock-in of a Small Mutated Sequence and a Targeted Toxin-Based Selection System.
    Sato M; Kagoshima A; Saitoh I; Inada E; Miyoshi K; Ohtsuka M; Nakamura S; Sakurai T; Watanabe S
    Reprod Domest Anim; 2015 Oct; 50(5):872-80. PubMed ID: 26138589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient production of biallelic GGTA1 knockout pigs by cytoplasmic microinjection of CRISPR/Cas9 into zygotes.
    Petersen B; Frenzel A; Lucas-Hahn A; Herrmann D; Hassel P; Klein S; Ziegler M; Hadeler KG; Niemann H
    Xenotransplantation; 2016 Sep; 23(5):338-46. PubMed ID: 27610605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient Generation of Somatic Cell Nuclear Transfer-Competent Porcine Cells with Mutated Alleles at Multiple Target Loci by Using CRISPR/Cas9 Combined with Targeted Toxin-Based Selection System.
    Sato M; Miyoshi K; Nakamura S; Ohtsuka M; Sakurai T; Watanabe S; Kawaguchi H; Tanimoto A
    Int J Mol Sci; 2017 Dec; 18(12):. PubMed ID: 29207527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biallelic knockout of the α-1,3 galactosyltransferase gene in porcine liver-derived cells using zinc finger nucleases.
    Li P; Estrada JL; Burlak C; Tector AJ
    J Surg Res; 2013 May; 181(1):e39-45. PubMed ID: 22795272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of α1,3-galactosyltransferase and cytidine monophosphate-N-acetylneuraminic acid hydroxylase gene double-deficient pigs by CRISPR/Cas9 and handmade cloning.
    Gao H; Zhao C; Xiang X; Li Y; Zhao Y; Li Z; Pan D; Dai Y; Hara H; Cooper DK; Cai Z; Mou L
    J Reprod Dev; 2017 Feb; 63(1):17-26. PubMed ID: 27725344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Combinational Use of CRISPR/Cas9 and Targeted Toxin Technology Enables Efficient Isolation of Bi-Allelic Knockout Non-Human Mammalian Clones.
    Watanabe S; Sakurai T; Nakamura S; Miyoshi K; Sato M
    Int J Mol Sci; 2018 Apr; 19(4):. PubMed ID: 29617297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silencing the porcine iGb3s gene does not affect Galα3Gal levels or measures of anticipated pig-to-human and pig-to-primate acute rejection.
    Butler JR; Skill NJ; Priestman DL; Platt FM; Li P; Estrada JL; Martens GR; Ladowski JM; Tector M; Tector AJ
    Xenotransplantation; 2016 Mar; 23(2):106-16. PubMed ID: 27106872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient generation of GGTA1-deficient pigs by electroporation of the CRISPR/Cas9 system into in vitro-fertilized zygotes.
    Tanihara F; Hirata M; Nguyen NT; Sawamoto O; Kikuchi T; Doi M; Otoi T
    BMC Biotechnol; 2020 Aug; 20(1):40. PubMed ID: 32811500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct Injection of CRISPR/Cas9-Related mRNA into Cytoplasm of Parthenogenetically Activated Porcine Oocytes Causes Frequent Mosaicism for Indel Mutations.
    Sato M; Koriyama M; Watanabe S; Ohtsuka M; Sakurai T; Inada E; Saitoh I; Nakamura S; Miyoshi K
    Int J Mol Sci; 2015 Aug; 16(8):17838-56. PubMed ID: 26247938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient generation of GGTA1-null Diannan miniature pigs using TALENs combined with somatic cell nuclear transfer.
    Cheng W; Zhao H; Yu H; Xin J; Wang J; Zeng L; Yuan Z; Qing Y; Li H; Jia B; Yang C; Shen Y; Zhao L; Pan W; Zhao HY; Wang W; Wei HJ
    Reprod Biol Endocrinol; 2016 Nov; 14(1):77. PubMed ID: 27821126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A desirable transgenic strategy using GGTA1 endogenous promoter-mediated knock-in for xenotransplantation model.
    Ko N; Shim J; Kim HJ; Lee Y; Park JK; Kwak K; Lee JW; Jin DI; Kim H; Choi K
    Sci Rep; 2022 Jun; 12(1):9611. PubMed ID: 35688851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of GGTA1 biallelic knockout pigs via zinc-finger nucleases and somatic cell nuclear transfer.
    Bao L; Chen H; Jong U; Rim C; Li W; Lin X; Zhang D; Luo Q; Cui C; Huang H; Zhang Y; Xiao L; Fu Z
    Sci China Life Sci; 2014 Feb; 57(2):263-8. PubMed ID: 24430555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of α1,3-galactosyltransferase targeted pigs using transcription activator-like effector nuclease-mediated genome editing technology.
    Kang JT; Kwon DK; Park AR; Lee EJ; Yun YJ; Ji DY; Lee K; Park KW
    J Vet Sci; 2016 Mar; 17(1):89-96. PubMed ID: 27051344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly efficient generation of GGTA1 biallelic knockout inbred mini-pigs with TALENs.
    Xin J; Yang H; Fan N; Zhao B; Ouyang Z; Liu Z; Zhao Y; Li X; Song J; Yang Y; Zou Q; Yan Q; Zeng Y; Lai L
    PLoS One; 2013; 8(12):e84250. PubMed ID: 24358349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation of B cell-deficient pigs by highly efficient CRISPR/Cas9-mediated gene targeting.
    Chen F; Wang Y; Yuan Y; Zhang W; Ren Z; Jin Y; Liu X; Xiong Q; Chen Q; Zhang M; Li X; Zhao L; Li Z; Wu Z; Zhang Y; Hu F; Huang J; Li R; Dai Y
    J Genet Genomics; 2015 Aug; 42(8):437-44. PubMed ID: 26336800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient generation of genetically distinct pigs in a single pregnancy using multiplexed single-guide RNA and carbohydrate selection.
    Li P; Estrada JL; Burlak C; Montgomery J; Butler JR; Santos RM; Wang ZY; Paris LL; Blankenship RL; Downey SM; Tector M; Tector AJ
    Xenotransplantation; 2015; 22(1):20-31. PubMed ID: 25178170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of GGTA1-/-β2M-/-CIITA-/- Pigs Using CRISPR/Cas9 Technology to Alleviate Xenogeneic Immune Reactions.
    Fu R; Fang M; Xu K; Ren J; Zou J; Su L; Chen X; An P; Yu D; Ka M; Hai T; Li Z; Li W; Yang Y; Zhou Q; Hu Z
    Transplantation; 2020 Aug; 104(8):1566-1573. PubMed ID: 32732833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient generation of targeted and controlled mutational events in porcine cells using nuclease-directed homologous recombination.
    Butler JR; Santos RMN; Martens GR; Ladowski JM; Wang ZY; Li P; Tector M; Tector AJ
    J Surg Res; 2017 May; 212():238-245. PubMed ID: 28550913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Timing of CRISPR/Cas9-related mRNA microinjection after activation as an important factor affecting genome editing efficiency in porcine oocytes.
    Sato M; Kosuke M; Koriyama M; Inada E; Saitoh I; Ohtsuka M; Nakamura S; Sakurai T; Watanabe S; Miyoshi K
    Theriogenology; 2018 Mar; 108():29-38. PubMed ID: 29195121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.