These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 24919678)

  • 41. Thermal meta-device in analogue of zero-index photonics.
    Li Y; Zhu KJ; Peng YG; Li W; Yang T; Xu HX; Chen H; Zhu XF; Fan S; Qiu CW
    Nat Mater; 2019 Jan; 18(1):48-54. PubMed ID: 30510270
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Numerical investigation of band gaps in 3D printed cantilever-in-mass metamaterials.
    Qureshi A; Li B; Tan KT
    Sci Rep; 2016 Jun; 6():28314. PubMed ID: 27329828
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Enhanced bandwidth and reduced dispersion through stacking multiple optical metamaterials.
    Escarra MD; Thongrattanasiri S; Charles WO; Hoffman AJ; Podolskiy VA; Gmachl C
    Opt Express; 2011 Aug; 19(16):14990-8. PubMed ID: 21934860
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Experimental Demonstration of Electromagnetically Induced Transparency in a Conductively Coupled Flexible Metamaterial with Cheap Aluminum Foil.
    Hu J; Lang T; Xu W; Liu J; Hong Z
    Nanoscale Res Lett; 2019 Dec; 14(1):359. PubMed ID: 31792628
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Integrating microsystems with metamaterials towards metadevices.
    Zhao X; Duan G; Li A; Chen C; Zhang X
    Microsyst Nanoeng; 2019; 5():5. PubMed ID: 31057932
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Numerical simulation data for the dynamic properties of rainbow metamaterials.
    Meng H; Chronopoulos D; Fabro AT
    Data Brief; 2020 Feb; 28():104772. PubMed ID: 31871966
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Homogenization of quasi-1d metamaterials and the problem of extended bandwidth.
    Goncharenko AV; Venger EF; Pinchuk AO
    Opt Express; 2014 Feb; 22(3):2429-42. PubMed ID: 24663534
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Magnetoelastic metamaterials.
    Lapine M; Shadrivov IV; Powell DA; Kivshar YS
    Nat Mater; 2011 Nov; 11(1):30-3. PubMed ID: 22081080
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Tightly coupled tripole conductor pairs as constituents for a planar 2D-isotropic negative refractive index metamaterial.
    Vallecchi A; Capolino F
    Opt Express; 2009 Aug; 17(17):15216-27. PubMed ID: 19688000
    [TBL] [Abstract][Full Text] [Related]  

  • 50. 3D Pixel Mechanical Metamaterials.
    Pan F; Li Y; Li Z; Yang J; Liu B; Chen Y
    Adv Mater; 2019 Jun; 31(25):e1900548. PubMed ID: 31074009
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Tunable dual-band negative refractive index in ferrite-based metamaterials.
    Bi K; Zhou J; Zhao H; Liu X; Lan C
    Opt Express; 2013 May; 21(9):10746-52. PubMed ID: 23669931
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Visible-frequency hyperbolic metasurface.
    High AA; Devlin RC; Dibos A; Polking M; Wild DS; Perczel J; de Leon NP; Lukin MD; Park H
    Nature; 2015 Jun; 522(7555):192-6. PubMed ID: 26062510
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Experimental demonstration of labyrinth-based left-handed metamaterials.
    Bulu I; Caglayan H; Ozbay E
    Opt Express; 2005 Dec; 13(25):10238-47. PubMed ID: 19503238
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A new planar left-handed metamaterial composed of metal-dielectric-metal structure.
    Kang M; Shen NH; Chen J; Chen J; Fan YX; Ding J; Wang HT; Wu P
    Opt Express; 2008 Jun; 16(12):8617-22. PubMed ID: 18545574
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Independent control of differently-polarized waves using anisotropic gradient-index metamaterials.
    Ma HF; Wang GZ; Jiang WX; Cui TJ
    Sci Rep; 2014 Sep; 4():6337. PubMed ID: 25231412
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Fast Fabrication of Fishnet Optical Metamaterial Based on Femtosecond Laser Induced Stress Break Technique.
    Zhang KX; Shao JD; Hu GH; Chai YJ; He HB; Zhu MP; Li DW; Liu XF
    Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33809597
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Wave attenuation and trapping in 3D printed cantilever-in-mass metamaterials with spatially correlated variability.
    Beli D; Fabro AT; Ruzzene M; Arruda JRF
    Sci Rep; 2019 Apr; 9(1):5617. PubMed ID: 30948748
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An octave-bandwidth negligible-loss radiofrequency metamaterial.
    Lier E; Werner DH; Scarborough CP; Wu Q; Bossard JA
    Nat Mater; 2011 Mar; 10(3):216-22. PubMed ID: 21278741
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Magnetic response of metamaterials at 100 terahertz.
    Linden S; Enkrich C; Wegener M; Zhou J; Koschny T; Soukoulis CM
    Science; 2004 Nov; 306(5700):1351-3. PubMed ID: 15550664
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Three-dimensional photonic metamaterials at optical frequencies.
    Liu N; Guo H; Fu L; Kaiser S; Schweizer H; Giessen H
    Nat Mater; 2008 Jan; 7(1):31-7. PubMed ID: 18059275
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.