These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
63. Looking into meta-atoms of plasmonic nanowire metamaterial. Tsai KT; Wurtz GA; Chu JY; Cheng TY; Wang HH; Krasavin AV; He JH; Wells BM; Podolskiy VA; Wang JK; Wang YL; Zayats AV Nano Lett; 2014 Sep; 14(9):4971-6. PubMed ID: 25115592 [TBL] [Abstract][Full Text] [Related]
64. Radar illusion via metamaterials. Jiang WX; Cui TJ Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Feb; 83(2 Pt 2):026601. PubMed ID: 21405918 [TBL] [Abstract][Full Text] [Related]
65. A microring resonator based negative permeability metamaterial sensor. Sun J; Huang M; Yang JJ; Li TH; Lan YZ Sensors (Basel); 2011; 11(8):8060-71. PubMed ID: 22164062 [TBL] [Abstract][Full Text] [Related]
66. Stacked-and-drawn metamaterials with magnetic resonances in the terahertz range. Tuniz A; Lwin R; Argyros A; Fleming SC; Pogson EM; Constable E; Lewis RA; Kuhlmey BT Opt Express; 2011 Aug; 19(17):16480-90. PubMed ID: 21935012 [TBL] [Abstract][Full Text] [Related]
68. Ultrathin and lightweight microwave absorbers made of mu-near-zero metamaterials. Zhong S; He S Sci Rep; 2013; 3():2083. PubMed ID: 23803861 [TBL] [Abstract][Full Text] [Related]
69. Description and explanation of electromagnetic behaviors in artificial metamaterials based on effective medium theory. Liu R; Cui TJ; Huang D; Zhao B; Smith DR Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 2):026606. PubMed ID: 17930166 [TBL] [Abstract][Full Text] [Related]
70. Wide-angle transmissions of electromagnetic fields through the sandwiched transparent epsilon-near-zero metamaterial screen. Yang R; Yang P; Chen Y; Li J; Lei Z Opt Lett; 2018 Jan; 43(1):5-8. PubMed ID: 29328227 [TBL] [Abstract][Full Text] [Related]
71. Realizing UWB Antenna Array with Dual and Wide Rejection Bands Using Metamaterial and Electromagnetic Bandgaps Techniques. Althuwayb AA; Alibakhshikenari M; Virdee BS; Shukla P; Limiti E Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33800803 [TBL] [Abstract][Full Text] [Related]
72. Negative refraction, gain and nonlinear effects in hyperbolic metamaterials. Argyropoulos C; Estakhri NM; Monticone F; Alù A Opt Express; 2013 Jun; 21(12):15037-47. PubMed ID: 23787691 [TBL] [Abstract][Full Text] [Related]
75. Thermally tunable high-Q metamaterial and sensing application based on liquid metals. Ma L; Chen D; Zheng W; Li J; Wang W; Liu Y; Zhou Y; Huang Y; Wen G Opt Express; 2021 Feb; 29(4):6069-6079. PubMed ID: 33726136 [TBL] [Abstract][Full Text] [Related]
76. Engineering the magnetic plasmon resonances of metamaterials for high-quality sensing. Chen J; Fan W; Zhang T; Tang C; Chen X; Wu J; Li D; Yu Y Opt Express; 2017 Feb; 25(4):3675-3681. PubMed ID: 28241580 [TBL] [Abstract][Full Text] [Related]
77. Zero loss magnetic metamaterials using powered active unit cells. Yuan Y; Popa BI; Cummer SA Opt Express; 2009 Aug; 17(18):16135-43. PubMed ID: 19724613 [TBL] [Abstract][Full Text] [Related]
78. Acoustic metamaterials with circular sector cavities and programmable densities. Akl W; Elsabbagh A; Baz A J Acoust Soc Am; 2012 Oct; 132(4):2857-65. PubMed ID: 23039552 [TBL] [Abstract][Full Text] [Related]
79. Omnidirectional magnetic-resonance transmission and its elimination in a metallic metamaterial comprising rings and plates. Dong ZG; Xu MX; Liu H; Li T; Zhu SN Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Dec; 78(6 Pt 2):066612. PubMed ID: 19256973 [TBL] [Abstract][Full Text] [Related]